Heterogeneous catalysts for CO2 hydrogenation to formic acid/formate: from nanoscale to single atom

Propelled by the vision of carbon-neutral energy systems, heterogeneous hydrogenation of CO2 to formic acid/formate, a liquid hydrogen carrier, has been intensively studied as a promising approach to realize renewable and decarbonized energy supply. In the present review, the state-of-the-art of het...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2021-01, Vol.14 (3), p.1247-1285
Hauptverfasser: Sun, Ruiyan, Liao, Yuhe, Shao-Tao, Bai, Zheng, Mingyuan, Zhou, Cheng, Zhang, Tao, Sels, Bert F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Propelled by the vision of carbon-neutral energy systems, heterogeneous hydrogenation of CO2 to formic acid/formate, a liquid hydrogen carrier, has been intensively studied as a promising approach to realize renewable and decarbonized energy supply. In the present review, the state-of-the-art of heterogeneous catalysts for this process is comprehensively summarized. First, a brief description of the challenges associated with thermodynamics is provided. Major advancements on constructing efficient heterogeneous catalysts then constitute the main body of this review, mainly involving nanostructured and single atom catalysts based on noble metals. Special attention is paid to the relevant structure–activity correlations and mechanistic insights, which provide strong bases for rational catalyst design. Key factors related to catalytic activity are highlighted including metal dispersion, electron density, basic functionalities, and concerted catalysis of metal and basic sites. A summary and outlook is presented in the end. We believe that this review will inspire more novel research from the catalysis community to advance the design of innovative catalytic materials towards the ultimate sustainable energy sector with a closed carbon loop.
ISSN:1754-5692
1754-5706
DOI:10.1039/d0ee03575k