The Trivalent Rare‐Earth Dopant in the KBaPO4 and KSrPO4 Compounds: An Atomistic Simulation Study
KBaPO4 and KSrPO4 phosphates belong to an important group of luminescent materials that have a wide range of optical applications when doped with trivalent rare‐earth (RE) ions. An atomistic simulation technique based on lattice energy minimization is used to examine the intrinsic defect process and...
Gespeichert in:
Veröffentlicht in: | PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS 2021-06, Vol.258 (6), p.n/a, Article 2000620 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS |
container_volume | 258 |
creator | Barbosa, Gilberto J. dos S. Rezende, Marcos V. |
description | KBaPO4 and KSrPO4 phosphates belong to an important group of luminescent materials that have a wide range of optical applications when doped with trivalent rare‐earth (RE) ions. An atomistic simulation technique based on lattice energy minimization is used to examine the intrinsic defect process and the incorporation of a variety of trivalent RE (RE = Yb3+, Dy3+, Tb3+, Sm3+, Pr3+, and Ce3+) dopant ions in KBaPO4 and KSrPO4. Calculations suggest that intrinsic defects such as the K’M antisite and K Frenkel are favorable, and also that the RE ions preferentially occupy divalent host sites in both structures. The K’Ba and K’Sr antisite defects are the most favorable charge compensation defect in KBaPO4 and KSrPO4, respectively. Structural and local changes caused by trivalent dopants are also investigated.
The behavior of rare‐earth ions on potassium barium phosphate (KBaPO4) and potassium strontium phosphate (KSrPO4) is presented. This approach provides information to understanding different structural and physical properties of these compounds, as changes in the chemical nature, in the electronic and crystalline structure, possible to advance in the production and development of new luminescent devices. |
doi_str_mv | 10.1002/pssb.202000620 |
format | Article |
fullrecord | <record><control><sourceid>wiley_webof</sourceid><recordid>TN_cdi_webofscience_primary_000638244600001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PSSB202000620</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2330-8ff29a7b127f4a9e5f362d121a6f1b31bcbe21646b2ad830e03db3c08eb287733</originalsourceid><addsrcrecordid>eNqNkU1PwzAMhiMEEmNw5Zw76rCTrh_ctjI-tEmb6DhXSZtqQf1Sk4F64yfwG_kltDDtzMmvrceW7ZeQa4QJArDbxhg5YcAAwGNwQkY4ZejwcIqnZATcBwdDn52TC2PeesZHjiOSbneKblv9LgpVWfoiWvX9-bUQrd3R-7oRfU1X1PbQci42a5eKKqPLuB1kVJdNva8yc0dnFZ3ZutTG6pTGutwXwuq6orHdZ90lOctFYdTVIY7J68NiGz05q_XjczRbOQ3jHJwgz1kofInMz10RqmnOPZYhQ-HlKDnKVCqGnutJJrKAgwKeSZ5CoCQLfJ_zMQn-5n4oWecm1apKVdK0uhRtlwxv4QFzXa9XgJG2vytG_QW2b735f2tPhwdaF6o7YgjJYEQyGJEcjUg2cTw_ZvwHhDh8_Q</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Trivalent Rare‐Earth Dopant in the KBaPO4 and KSrPO4 Compounds: An Atomistic Simulation Study</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Barbosa, Gilberto J. ; dos S. Rezende, Marcos V.</creator><creatorcontrib>Barbosa, Gilberto J. ; dos S. Rezende, Marcos V.</creatorcontrib><description>KBaPO4 and KSrPO4 phosphates belong to an important group of luminescent materials that have a wide range of optical applications when doped with trivalent rare‐earth (RE) ions. An atomistic simulation technique based on lattice energy minimization is used to examine the intrinsic defect process and the incorporation of a variety of trivalent RE (RE = Yb3+, Dy3+, Tb3+, Sm3+, Pr3+, and Ce3+) dopant ions in KBaPO4 and KSrPO4. Calculations suggest that intrinsic defects such as the K’M antisite and K Frenkel are favorable, and also that the RE ions preferentially occupy divalent host sites in both structures. The K’Ba and K’Sr antisite defects are the most favorable charge compensation defect in KBaPO4 and KSrPO4, respectively. Structural and local changes caused by trivalent dopants are also investigated.
The behavior of rare‐earth ions on potassium barium phosphate (KBaPO4) and potassium strontium phosphate (KSrPO4) is presented. This approach provides information to understanding different structural and physical properties of these compounds, as changes in the chemical nature, in the electronic and crystalline structure, possible to advance in the production and development of new luminescent devices.</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.202000620</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>atomistic simulation defects ; luminescence ; optical materials ; Physical Sciences ; Physics ; Physics, Condensed Matter ; Science & Technology</subject><ispartof>PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2021-06, Vol.258 (6), p.n/a, Article 2000620</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000638244600001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-p2330-8ff29a7b127f4a9e5f362d121a6f1b31bcbe21646b2ad830e03db3c08eb287733</cites><orcidid>0000-0001-9202-5122 ; 0000-0001-6665-4101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.202000620$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.202000620$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,39263,45579,45580</link.rule.ids></links><search><creatorcontrib>Barbosa, Gilberto J.</creatorcontrib><creatorcontrib>dos S. Rezende, Marcos V.</creatorcontrib><title>The Trivalent Rare‐Earth Dopant in the KBaPO4 and KSrPO4 Compounds: An Atomistic Simulation Study</title><title>PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS</title><addtitle>PHYS STATUS SOLIDI B</addtitle><description>KBaPO4 and KSrPO4 phosphates belong to an important group of luminescent materials that have a wide range of optical applications when doped with trivalent rare‐earth (RE) ions. An atomistic simulation technique based on lattice energy minimization is used to examine the intrinsic defect process and the incorporation of a variety of trivalent RE (RE = Yb3+, Dy3+, Tb3+, Sm3+, Pr3+, and Ce3+) dopant ions in KBaPO4 and KSrPO4. Calculations suggest that intrinsic defects such as the K’M antisite and K Frenkel are favorable, and also that the RE ions preferentially occupy divalent host sites in both structures. The K’Ba and K’Sr antisite defects are the most favorable charge compensation defect in KBaPO4 and KSrPO4, respectively. Structural and local changes caused by trivalent dopants are also investigated.
The behavior of rare‐earth ions on potassium barium phosphate (KBaPO4) and potassium strontium phosphate (KSrPO4) is presented. This approach provides information to understanding different structural and physical properties of these compounds, as changes in the chemical nature, in the electronic and crystalline structure, possible to advance in the production and development of new luminescent devices.</description><subject>atomistic simulation defects</subject><subject>luminescence</subject><subject>optical materials</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Condensed Matter</subject><subject>Science & Technology</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkU1PwzAMhiMEEmNw5Zw76rCTrh_ctjI-tEmb6DhXSZtqQf1Sk4F64yfwG_kltDDtzMmvrceW7ZeQa4QJArDbxhg5YcAAwGNwQkY4ZejwcIqnZATcBwdDn52TC2PeesZHjiOSbneKblv9LgpVWfoiWvX9-bUQrd3R-7oRfU1X1PbQci42a5eKKqPLuB1kVJdNva8yc0dnFZ3ZutTG6pTGutwXwuq6orHdZ90lOctFYdTVIY7J68NiGz05q_XjczRbOQ3jHJwgz1kofInMz10RqmnOPZYhQ-HlKDnKVCqGnutJJrKAgwKeSZ5CoCQLfJ_zMQn-5n4oWecm1apKVdK0uhRtlwxv4QFzXa9XgJG2vytG_QW2b735f2tPhwdaF6o7YgjJYEQyGJEcjUg2cTw_ZvwHhDh8_Q</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Barbosa, Gilberto J.</creator><creator>dos S. Rezende, Marcos V.</creator><general>Wiley</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><orcidid>https://orcid.org/0000-0001-9202-5122</orcidid><orcidid>https://orcid.org/0000-0001-6665-4101</orcidid></search><sort><creationdate>202106</creationdate><title>The Trivalent Rare‐Earth Dopant in the KBaPO4 and KSrPO4 Compounds: An Atomistic Simulation Study</title><author>Barbosa, Gilberto J. ; dos S. Rezende, Marcos V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2330-8ff29a7b127f4a9e5f362d121a6f1b31bcbe21646b2ad830e03db3c08eb287733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>atomistic simulation defects</topic><topic>luminescence</topic><topic>optical materials</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Condensed Matter</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbosa, Gilberto J.</creatorcontrib><creatorcontrib>dos S. Rezende, Marcos V.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><jtitle>PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbosa, Gilberto J.</au><au>dos S. Rezende, Marcos V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Trivalent Rare‐Earth Dopant in the KBaPO4 and KSrPO4 Compounds: An Atomistic Simulation Study</atitle><jtitle>PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS</jtitle><stitle>PHYS STATUS SOLIDI B</stitle><date>2021-06</date><risdate>2021</risdate><volume>258</volume><issue>6</issue><epage>n/a</epage><artnum>2000620</artnum><issn>0370-1972</issn><eissn>1521-3951</eissn><abstract>KBaPO4 and KSrPO4 phosphates belong to an important group of luminescent materials that have a wide range of optical applications when doped with trivalent rare‐earth (RE) ions. An atomistic simulation technique based on lattice energy minimization is used to examine the intrinsic defect process and the incorporation of a variety of trivalent RE (RE = Yb3+, Dy3+, Tb3+, Sm3+, Pr3+, and Ce3+) dopant ions in KBaPO4 and KSrPO4. Calculations suggest that intrinsic defects such as the K’M antisite and K Frenkel are favorable, and also that the RE ions preferentially occupy divalent host sites in both structures. The K’Ba and K’Sr antisite defects are the most favorable charge compensation defect in KBaPO4 and KSrPO4, respectively. Structural and local changes caused by trivalent dopants are also investigated.
The behavior of rare‐earth ions on potassium barium phosphate (KBaPO4) and potassium strontium phosphate (KSrPO4) is presented. This approach provides information to understanding different structural and physical properties of these compounds, as changes in the chemical nature, in the electronic and crystalline structure, possible to advance in the production and development of new luminescent devices.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><doi>10.1002/pssb.202000620</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9202-5122</orcidid><orcidid>https://orcid.org/0000-0001-6665-4101</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-1972 |
ispartof | PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2021-06, Vol.258 (6), p.n/a, Article 2000620 |
issn | 0370-1972 1521-3951 |
language | eng |
recordid | cdi_webofscience_primary_000638244600001CitationCount |
source | Wiley Online Library - AutoHoldings Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | atomistic simulation defects luminescence optical materials Physical Sciences Physics Physics, Condensed Matter Science & Technology |
title | The Trivalent Rare‐Earth Dopant in the KBaPO4 and KSrPO4 Compounds: An Atomistic Simulation Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T23%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Trivalent%20Rare%E2%80%90Earth%20Dopant%20in%20the%20KBaPO4%20and%20KSrPO4%20Compounds:%20An%20Atomistic%20Simulation%20Study&rft.jtitle=PHYSICA%20STATUS%20SOLIDI%20B-BASIC%20SOLID%20STATE%20PHYSICS&rft.au=Barbosa,%20Gilberto%20J.&rft.date=2021-06&rft.volume=258&rft.issue=6&rft.epage=n/a&rft.artnum=2000620&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.202000620&rft_dat=%3Cwiley_webof%3EPSSB202000620%3C/wiley_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |