The Trivalent Rare‐Earth Dopant in the KBaPO4 and KSrPO4 Compounds: An Atomistic Simulation Study

KBaPO4 and KSrPO4 phosphates belong to an important group of luminescent materials that have a wide range of optical applications when doped with trivalent rare‐earth (RE) ions. An atomistic simulation technique based on lattice energy minimization is used to examine the intrinsic defect process and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS 2021-06, Vol.258 (6), p.n/a, Article 2000620
Hauptverfasser: Barbosa, Gilberto J., dos S. Rezende, Marcos V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
container_volume 258
creator Barbosa, Gilberto J.
dos S. Rezende, Marcos V.
description KBaPO4 and KSrPO4 phosphates belong to an important group of luminescent materials that have a wide range of optical applications when doped with trivalent rare‐earth (RE) ions. An atomistic simulation technique based on lattice energy minimization is used to examine the intrinsic defect process and the incorporation of a variety of trivalent RE (RE = Yb3+, Dy3+, Tb3+, Sm3+, Pr3+, and Ce3+) dopant ions in KBaPO4 and KSrPO4. Calculations suggest that intrinsic defects such as the K’M antisite and K Frenkel are favorable, and also that the RE ions preferentially occupy divalent host sites in both structures. The K’Ba and K’Sr antisite defects are the most favorable charge compensation defect in KBaPO4 and KSrPO4, respectively. Structural and local changes caused by trivalent dopants are also investigated. The behavior of rare‐earth ions on potassium barium phosphate (KBaPO4) and potassium strontium phosphate (KSrPO4) is presented. This approach provides information to understanding different structural and physical properties of these compounds, as changes in the chemical nature, in the electronic and crystalline structure, possible to advance in the production and development of new luminescent devices.
doi_str_mv 10.1002/pssb.202000620
format Article
fullrecord <record><control><sourceid>wiley_webof</sourceid><recordid>TN_cdi_webofscience_primary_000638244600001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PSSB202000620</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2330-8ff29a7b127f4a9e5f362d121a6f1b31bcbe21646b2ad830e03db3c08eb287733</originalsourceid><addsrcrecordid>eNqNkU1PwzAMhiMEEmNw5Zw76rCTrh_ctjI-tEmb6DhXSZtqQf1Sk4F64yfwG_kltDDtzMmvrceW7ZeQa4QJArDbxhg5YcAAwGNwQkY4ZejwcIqnZATcBwdDn52TC2PeesZHjiOSbneKblv9LgpVWfoiWvX9-bUQrd3R-7oRfU1X1PbQci42a5eKKqPLuB1kVJdNva8yc0dnFZ3ZutTG6pTGutwXwuq6orHdZ90lOctFYdTVIY7J68NiGz05q_XjczRbOQ3jHJwgz1kofInMz10RqmnOPZYhQ-HlKDnKVCqGnutJJrKAgwKeSZ5CoCQLfJ_zMQn-5n4oWecm1apKVdK0uhRtlwxv4QFzXa9XgJG2vytG_QW2b735f2tPhwdaF6o7YgjJYEQyGJEcjUg2cTw_ZvwHhDh8_Q</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Trivalent Rare‐Earth Dopant in the KBaPO4 and KSrPO4 Compounds: An Atomistic Simulation Study</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Barbosa, Gilberto J. ; dos S. Rezende, Marcos V.</creator><creatorcontrib>Barbosa, Gilberto J. ; dos S. Rezende, Marcos V.</creatorcontrib><description>KBaPO4 and KSrPO4 phosphates belong to an important group of luminescent materials that have a wide range of optical applications when doped with trivalent rare‐earth (RE) ions. An atomistic simulation technique based on lattice energy minimization is used to examine the intrinsic defect process and the incorporation of a variety of trivalent RE (RE = Yb3+, Dy3+, Tb3+, Sm3+, Pr3+, and Ce3+) dopant ions in KBaPO4 and KSrPO4. Calculations suggest that intrinsic defects such as the K’M antisite and K Frenkel are favorable, and also that the RE ions preferentially occupy divalent host sites in both structures. The K’Ba and K’Sr antisite defects are the most favorable charge compensation defect in KBaPO4 and KSrPO4, respectively. Structural and local changes caused by trivalent dopants are also investigated. The behavior of rare‐earth ions on potassium barium phosphate (KBaPO4) and potassium strontium phosphate (KSrPO4) is presented. This approach provides information to understanding different structural and physical properties of these compounds, as changes in the chemical nature, in the electronic and crystalline structure, possible to advance in the production and development of new luminescent devices.</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.202000620</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>atomistic simulation defects ; luminescence ; optical materials ; Physical Sciences ; Physics ; Physics, Condensed Matter ; Science &amp; Technology</subject><ispartof>PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2021-06, Vol.258 (6), p.n/a, Article 2000620</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000638244600001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-p2330-8ff29a7b127f4a9e5f362d121a6f1b31bcbe21646b2ad830e03db3c08eb287733</cites><orcidid>0000-0001-9202-5122 ; 0000-0001-6665-4101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.202000620$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.202000620$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,39263,45579,45580</link.rule.ids></links><search><creatorcontrib>Barbosa, Gilberto J.</creatorcontrib><creatorcontrib>dos S. Rezende, Marcos V.</creatorcontrib><title>The Trivalent Rare‐Earth Dopant in the KBaPO4 and KSrPO4 Compounds: An Atomistic Simulation Study</title><title>PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS</title><addtitle>PHYS STATUS SOLIDI B</addtitle><description>KBaPO4 and KSrPO4 phosphates belong to an important group of luminescent materials that have a wide range of optical applications when doped with trivalent rare‐earth (RE) ions. An atomistic simulation technique based on lattice energy minimization is used to examine the intrinsic defect process and the incorporation of a variety of trivalent RE (RE = Yb3+, Dy3+, Tb3+, Sm3+, Pr3+, and Ce3+) dopant ions in KBaPO4 and KSrPO4. Calculations suggest that intrinsic defects such as the K’M antisite and K Frenkel are favorable, and also that the RE ions preferentially occupy divalent host sites in both structures. The K’Ba and K’Sr antisite defects are the most favorable charge compensation defect in KBaPO4 and KSrPO4, respectively. Structural and local changes caused by trivalent dopants are also investigated. The behavior of rare‐earth ions on potassium barium phosphate (KBaPO4) and potassium strontium phosphate (KSrPO4) is presented. This approach provides information to understanding different structural and physical properties of these compounds, as changes in the chemical nature, in the electronic and crystalline structure, possible to advance in the production and development of new luminescent devices.</description><subject>atomistic simulation defects</subject><subject>luminescence</subject><subject>optical materials</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Condensed Matter</subject><subject>Science &amp; Technology</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkU1PwzAMhiMEEmNw5Zw76rCTrh_ctjI-tEmb6DhXSZtqQf1Sk4F64yfwG_kltDDtzMmvrceW7ZeQa4QJArDbxhg5YcAAwGNwQkY4ZejwcIqnZATcBwdDn52TC2PeesZHjiOSbneKblv9LgpVWfoiWvX9-bUQrd3R-7oRfU1X1PbQci42a5eKKqPLuB1kVJdNva8yc0dnFZ3ZutTG6pTGutwXwuq6orHdZ90lOctFYdTVIY7J68NiGz05q_XjczRbOQ3jHJwgz1kofInMz10RqmnOPZYhQ-HlKDnKVCqGnutJJrKAgwKeSZ5CoCQLfJ_zMQn-5n4oWecm1apKVdK0uhRtlwxv4QFzXa9XgJG2vytG_QW2b735f2tPhwdaF6o7YgjJYEQyGJEcjUg2cTw_ZvwHhDh8_Q</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Barbosa, Gilberto J.</creator><creator>dos S. Rezende, Marcos V.</creator><general>Wiley</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><orcidid>https://orcid.org/0000-0001-9202-5122</orcidid><orcidid>https://orcid.org/0000-0001-6665-4101</orcidid></search><sort><creationdate>202106</creationdate><title>The Trivalent Rare‐Earth Dopant in the KBaPO4 and KSrPO4 Compounds: An Atomistic Simulation Study</title><author>Barbosa, Gilberto J. ; dos S. Rezende, Marcos V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2330-8ff29a7b127f4a9e5f362d121a6f1b31bcbe21646b2ad830e03db3c08eb287733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>atomistic simulation defects</topic><topic>luminescence</topic><topic>optical materials</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Condensed Matter</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbosa, Gilberto J.</creatorcontrib><creatorcontrib>dos S. Rezende, Marcos V.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><jtitle>PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbosa, Gilberto J.</au><au>dos S. Rezende, Marcos V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Trivalent Rare‐Earth Dopant in the KBaPO4 and KSrPO4 Compounds: An Atomistic Simulation Study</atitle><jtitle>PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS</jtitle><stitle>PHYS STATUS SOLIDI B</stitle><date>2021-06</date><risdate>2021</risdate><volume>258</volume><issue>6</issue><epage>n/a</epage><artnum>2000620</artnum><issn>0370-1972</issn><eissn>1521-3951</eissn><abstract>KBaPO4 and KSrPO4 phosphates belong to an important group of luminescent materials that have a wide range of optical applications when doped with trivalent rare‐earth (RE) ions. An atomistic simulation technique based on lattice energy minimization is used to examine the intrinsic defect process and the incorporation of a variety of trivalent RE (RE = Yb3+, Dy3+, Tb3+, Sm3+, Pr3+, and Ce3+) dopant ions in KBaPO4 and KSrPO4. Calculations suggest that intrinsic defects such as the K’M antisite and K Frenkel are favorable, and also that the RE ions preferentially occupy divalent host sites in both structures. The K’Ba and K’Sr antisite defects are the most favorable charge compensation defect in KBaPO4 and KSrPO4, respectively. Structural and local changes caused by trivalent dopants are also investigated. The behavior of rare‐earth ions on potassium barium phosphate (KBaPO4) and potassium strontium phosphate (KSrPO4) is presented. This approach provides information to understanding different structural and physical properties of these compounds, as changes in the chemical nature, in the electronic and crystalline structure, possible to advance in the production and development of new luminescent devices.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><doi>10.1002/pssb.202000620</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9202-5122</orcidid><orcidid>https://orcid.org/0000-0001-6665-4101</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2021-06, Vol.258 (6), p.n/a, Article 2000620
issn 0370-1972
1521-3951
language eng
recordid cdi_webofscience_primary_000638244600001CitationCount
source Wiley Online Library - AutoHoldings Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects atomistic simulation defects
luminescence
optical materials
Physical Sciences
Physics
Physics, Condensed Matter
Science & Technology
title The Trivalent Rare‐Earth Dopant in the KBaPO4 and KSrPO4 Compounds: An Atomistic Simulation Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T23%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Trivalent%20Rare%E2%80%90Earth%20Dopant%20in%20the%20KBaPO4%20and%20KSrPO4%20Compounds:%20An%20Atomistic%20Simulation%20Study&rft.jtitle=PHYSICA%20STATUS%20SOLIDI%20B-BASIC%20SOLID%20STATE%20PHYSICS&rft.au=Barbosa,%20Gilberto%20J.&rft.date=2021-06&rft.volume=258&rft.issue=6&rft.epage=n/a&rft.artnum=2000620&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.202000620&rft_dat=%3Cwiley_webof%3EPSSB202000620%3C/wiley_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true