Impacts of fracture network geometries on numerical simulation and performance prediction of enhanced geothermal systems

The effects of fracture distribution on the heat extraction performance of enhanced geothermal system (EGS) are very significant. Referring to lots of EGS fracturing projects, the fractures around wellbore are denser than other regions in fracture reservoir. Therefore, it is essential to understand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2021-06, Vol.171, p.492-504
Hauptverfasser: Liu, Gang, Zhou, Chunwei, Rao, Zhenghua, Liao, Shengming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 504
container_issue
container_start_page 492
container_title Renewable energy
container_volume 171
creator Liu, Gang
Zhou, Chunwei
Rao, Zhenghua
Liao, Shengming
description The effects of fracture distribution on the heat extraction performance of enhanced geothermal system (EGS) are very significant. Referring to lots of EGS fracturing projects, the fractures around wellbore are denser than other regions in fracture reservoir. Therefore, it is essential to understand the link between the thermal exploitation of EGS and fracture distributions around injection wells. We built a three-dimensional thermal-hydrologic (TH) coupling model to simulate thermal energy transfer and pressure distribution in reservoir. Taking Qiabuqia geothermal field as a case study, the impacts of fracture morphology (like length, quantity, position and complexity) on heat extraction are compared. The contributions of fracture networks’ aperture and permeability are also investigated. Results indicate that denser fracture network significantly improves heat extraction performance and extends system lifetime. Longer primary fracture length around injection wells decreases mass flow rate of working fluid and elevates fluid temperature at the exhausts of production wells. The non-uniform distribution of the primary fracture has negative effects on EGS performance. More complex and connected fractures lead to fluid loss, and larger fracture aperture and permeability decrease mass flow rate at the outlet of production wells. •Various complex fracture geometries around injection wells were simulated.•Denser fracture network around injection wells prolongs fracture reservoir lifetime.•Fracture length has opposite effects on production temperature and mass rate.•More interlacing fractures around injection wells lead to lower production mass rate.•Small fracture aperture and permeability increase heat extraction.
doi_str_mv 10.1016/j.renene.2021.02.070
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000637531600012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148121002457</els_id><sourcerecordid>S0960148121002457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-4fbc4a067262556ab2ce47171c7829f641698b089c2768392438eb46d7f7dd133</originalsourceid><addsrcrecordid>eNqNkEtPxCAQx4nRxPXxDTz0bloHygK9mJiNj01MvOiZUDoo67bdAOvj28s-4tEYDkxm5vcP_Ai5oFBRoOJqUQUc8qkYMFoBq0DCAZlQJZsShGKHZAKNgJJyRY_JSYwLADpVkk_I17xfGZtiMbrChVytAxYDps8xvBevOPaYgsc8Hoph3WPw1iyL6Pv10iSfm2boihUGN4beDBaLVcDO2-0oJ-Lwtul2m6T0hnknw98xYR_PyJEzy4jn-_uUvNzdPs8eysen-_ns5rG0NYhUctdabkBIJth0KkzLLHJJJbVSscYJTkWjWlCNZVKoumG8Vthy0Uknu47W9Snhu1wbxhgDOr0KvjfhW1PQG3t6oXf29MaeBqazvYxd7rBPbEcXrcf8j18UAEQtpzUVuaIsb6v_b8982rqbjeshZfR6h2KW8OEx6D3e-YA26W70f7_0B64PncQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Impacts of fracture network geometries on numerical simulation and performance prediction of enhanced geothermal systems</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Liu, Gang ; Zhou, Chunwei ; Rao, Zhenghua ; Liao, Shengming</creator><creatorcontrib>Liu, Gang ; Zhou, Chunwei ; Rao, Zhenghua ; Liao, Shengming</creatorcontrib><description>The effects of fracture distribution on the heat extraction performance of enhanced geothermal system (EGS) are very significant. Referring to lots of EGS fracturing projects, the fractures around wellbore are denser than other regions in fracture reservoir. Therefore, it is essential to understand the link between the thermal exploitation of EGS and fracture distributions around injection wells. We built a three-dimensional thermal-hydrologic (TH) coupling model to simulate thermal energy transfer and pressure distribution in reservoir. Taking Qiabuqia geothermal field as a case study, the impacts of fracture morphology (like length, quantity, position and complexity) on heat extraction are compared. The contributions of fracture networks’ aperture and permeability are also investigated. Results indicate that denser fracture network significantly improves heat extraction performance and extends system lifetime. Longer primary fracture length around injection wells decreases mass flow rate of working fluid and elevates fluid temperature at the exhausts of production wells. The non-uniform distribution of the primary fracture has negative effects on EGS performance. More complex and connected fractures lead to fluid loss, and larger fracture aperture and permeability decrease mass flow rate at the outlet of production wells. •Various complex fracture geometries around injection wells were simulated.•Denser fracture network around injection wells prolongs fracture reservoir lifetime.•Fracture length has opposite effects on production temperature and mass rate.•More interlacing fractures around injection wells lead to lower production mass rate.•Small fracture aperture and permeability increase heat extraction.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2021.02.070</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Energy &amp; Fuels ; Enhanced geothermal systems ; Fracture network geometries around wells ; Green &amp; Sustainable Science &amp; Technology ; Heat extraction ; Pressure distribution ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology</subject><ispartof>Renewable energy, 2021-06, Vol.171, p.492-504</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>47</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000637531600012</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c306t-4fbc4a067262556ab2ce47171c7829f641698b089c2768392438eb46d7f7dd133</citedby><cites>FETCH-LOGICAL-c306t-4fbc4a067262556ab2ce47171c7829f641698b089c2768392438eb46d7f7dd133</cites><orcidid>0000-0003-4315-4520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.renene.2021.02.070$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000</link.rule.ids></links><search><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Zhou, Chunwei</creatorcontrib><creatorcontrib>Rao, Zhenghua</creatorcontrib><creatorcontrib>Liao, Shengming</creatorcontrib><title>Impacts of fracture network geometries on numerical simulation and performance prediction of enhanced geothermal systems</title><title>Renewable energy</title><addtitle>RENEW ENERG</addtitle><description>The effects of fracture distribution on the heat extraction performance of enhanced geothermal system (EGS) are very significant. Referring to lots of EGS fracturing projects, the fractures around wellbore are denser than other regions in fracture reservoir. Therefore, it is essential to understand the link between the thermal exploitation of EGS and fracture distributions around injection wells. We built a three-dimensional thermal-hydrologic (TH) coupling model to simulate thermal energy transfer and pressure distribution in reservoir. Taking Qiabuqia geothermal field as a case study, the impacts of fracture morphology (like length, quantity, position and complexity) on heat extraction are compared. The contributions of fracture networks’ aperture and permeability are also investigated. Results indicate that denser fracture network significantly improves heat extraction performance and extends system lifetime. Longer primary fracture length around injection wells decreases mass flow rate of working fluid and elevates fluid temperature at the exhausts of production wells. The non-uniform distribution of the primary fracture has negative effects on EGS performance. More complex and connected fractures lead to fluid loss, and larger fracture aperture and permeability decrease mass flow rate at the outlet of production wells. •Various complex fracture geometries around injection wells were simulated.•Denser fracture network around injection wells prolongs fracture reservoir lifetime.•Fracture length has opposite effects on production temperature and mass rate.•More interlacing fractures around injection wells lead to lower production mass rate.•Small fracture aperture and permeability increase heat extraction.</description><subject>Energy &amp; Fuels</subject><subject>Enhanced geothermal systems</subject><subject>Fracture network geometries around wells</subject><subject>Green &amp; Sustainable Science &amp; Technology</subject><subject>Heat extraction</subject><subject>Pressure distribution</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkEtPxCAQx4nRxPXxDTz0bloHygK9mJiNj01MvOiZUDoo67bdAOvj28s-4tEYDkxm5vcP_Ai5oFBRoOJqUQUc8qkYMFoBq0DCAZlQJZsShGKHZAKNgJJyRY_JSYwLADpVkk_I17xfGZtiMbrChVytAxYDps8xvBevOPaYgsc8Hoph3WPw1iyL6Pv10iSfm2boihUGN4beDBaLVcDO2-0oJ-Lwtul2m6T0hnknw98xYR_PyJEzy4jn-_uUvNzdPs8eysen-_ns5rG0NYhUctdabkBIJth0KkzLLHJJJbVSscYJTkWjWlCNZVKoumG8Vthy0Uknu47W9Snhu1wbxhgDOr0KvjfhW1PQG3t6oXf29MaeBqazvYxd7rBPbEcXrcf8j18UAEQtpzUVuaIsb6v_b8982rqbjeshZfR6h2KW8OEx6D3e-YA26W70f7_0B64PncQ</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Liu, Gang</creator><creator>Zhou, Chunwei</creator><creator>Rao, Zhenghua</creator><creator>Liao, Shengming</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4315-4520</orcidid></search><sort><creationdate>202106</creationdate><title>Impacts of fracture network geometries on numerical simulation and performance prediction of enhanced geothermal systems</title><author>Liu, Gang ; Zhou, Chunwei ; Rao, Zhenghua ; Liao, Shengming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-4fbc4a067262556ab2ce47171c7829f641698b089c2768392438eb46d7f7dd133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Energy &amp; Fuels</topic><topic>Enhanced geothermal systems</topic><topic>Fracture network geometries around wells</topic><topic>Green &amp; Sustainable Science &amp; Technology</topic><topic>Heat extraction</topic><topic>Pressure distribution</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Zhou, Chunwei</creatorcontrib><creatorcontrib>Rao, Zhenghua</creatorcontrib><creatorcontrib>Liao, Shengming</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Gang</au><au>Zhou, Chunwei</au><au>Rao, Zhenghua</au><au>Liao, Shengming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impacts of fracture network geometries on numerical simulation and performance prediction of enhanced geothermal systems</atitle><jtitle>Renewable energy</jtitle><stitle>RENEW ENERG</stitle><date>2021-06</date><risdate>2021</risdate><volume>171</volume><spage>492</spage><epage>504</epage><pages>492-504</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>The effects of fracture distribution on the heat extraction performance of enhanced geothermal system (EGS) are very significant. Referring to lots of EGS fracturing projects, the fractures around wellbore are denser than other regions in fracture reservoir. Therefore, it is essential to understand the link between the thermal exploitation of EGS and fracture distributions around injection wells. We built a three-dimensional thermal-hydrologic (TH) coupling model to simulate thermal energy transfer and pressure distribution in reservoir. Taking Qiabuqia geothermal field as a case study, the impacts of fracture morphology (like length, quantity, position and complexity) on heat extraction are compared. The contributions of fracture networks’ aperture and permeability are also investigated. Results indicate that denser fracture network significantly improves heat extraction performance and extends system lifetime. Longer primary fracture length around injection wells decreases mass flow rate of working fluid and elevates fluid temperature at the exhausts of production wells. The non-uniform distribution of the primary fracture has negative effects on EGS performance. More complex and connected fractures lead to fluid loss, and larger fracture aperture and permeability decrease mass flow rate at the outlet of production wells. •Various complex fracture geometries around injection wells were simulated.•Denser fracture network around injection wells prolongs fracture reservoir lifetime.•Fracture length has opposite effects on production temperature and mass rate.•More interlacing fractures around injection wells lead to lower production mass rate.•Small fracture aperture and permeability increase heat extraction.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2021.02.070</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4315-4520</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2021-06, Vol.171, p.492-504
issn 0960-1481
1879-0682
language eng
recordid cdi_webofscience_primary_000637531600012
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Energy & Fuels
Enhanced geothermal systems
Fracture network geometries around wells
Green & Sustainable Science & Technology
Heat extraction
Pressure distribution
Science & Technology
Science & Technology - Other Topics
Technology
title Impacts of fracture network geometries on numerical simulation and performance prediction of enhanced geothermal systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A38%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impacts%20of%20fracture%20network%20geometries%20on%20numerical%20simulation%20and%20performance%20prediction%20of%20enhanced%20geothermal%20systems&rft.jtitle=Renewable%20energy&rft.au=Liu,%20Gang&rft.date=2021-06&rft.volume=171&rft.spage=492&rft.epage=504&rft.pages=492-504&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2021.02.070&rft_dat=%3Celsevier_webof%3ES0960148121002457%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0960148121002457&rfr_iscdi=true