On interface recombination, series resistance, and absorber diffusion length in BiI3 solar cells

Bismuth triiodide is a lead-free direct wide-bandgap solution-processable semiconductor that could be an alternative to lead-based perovskites in tandem or multijunction solar cells. However, the power conversion efficiency of single-junction BiI3 solar cells remains low. Here, we determine the main...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2021-04, Vol.129 (13)
Hauptverfasser: Meng, Yuhuan, Magruder, Benjamin R., Hillhouse, Hugh W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bismuth triiodide is a lead-free direct wide-bandgap solution-processable semiconductor that could be an alternative to lead-based perovskites in tandem or multijunction solar cells. However, the power conversion efficiency of single-junction BiI3 solar cells remains low. Here, we determine the main loss mechanisms of BiI3 solar cells in both n-i-p and p-i-n architectures. Overall, p-i-n devices have higher power conversion efficiency than that of n-i-p. It is found that n-i-p devices have higher (and significant) non-radiative recombination at the interface of the BiI3/transport layer, resulting in a lower open-circuit voltage than p-i-n devices. Moreover, the high series resistance (>70 Ω cm2) and a low average electron–hole diffusion length (∼60 nm) contributes to the low short-circuit current density (
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0034776