A genome-scale CRISPR Cas9 dropout screen identifies synthetically lethal targets in SRC-3 inhibited cancer cells
Steroid receptor coactivator 3 (SRC-3/NCoA3/AIB1), is a key regulator of gene transcription and it plays a central role in breast cancer (BC) tumorigenesis, making it a potential therapeutic target. Beyond its function as an important regulator of estrogen receptor transcriptional activity, SRC-3 al...
Gespeichert in:
Veröffentlicht in: | Communications biology 2021-03, Vol.4 (1), p.399-399, Article 399 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 399 |
---|---|
container_issue | 1 |
container_start_page | 399 |
container_title | Communications biology |
container_volume | 4 |
creator | Gilad, Yosi Eliaz, Yossi Yu, Yang Dean, Adam M. Han, San Jung Qin, Li O’Malley, Bert W. Lonard, David M. |
description | Steroid receptor coactivator 3 (SRC-3/NCoA3/AIB1), is a key regulator of gene transcription and it plays a central role in breast cancer (BC) tumorigenesis, making it a potential therapeutic target. Beyond its function as an important regulator of estrogen receptor transcriptional activity, SRC-3 also functions as a coactivator for a wide range of other transcription factors, suggesting SRC-3 inhibition can be beneficial in hormone-independent cancers as well. The recent discovery of a potent SRC-3 small molecule inhibitor, SI-2, enabled the further development of additional related compounds. SI-12 is an improved version of SI-2 that like SI-2 has anti-proliferative activity in various cancer types, including BC. Here, we sought to identify gene targets, that when inhibited in the presence of SI-12, would lead to enhanced BC cell cytotoxicity. We performed a genome-scale CRISPR-Cas9 screen in MCF-7 BC cells under conditions of pharmacological pressure with SI-12. A parallel screen was performed with an ER inhibitor, fulvestrant, to shed light on both common and distinct activities between SRC-3 and ERα inhibition. Bearing in mind the key role of SRC-3 in tumorigenesis of other types of cancer, we extended our study by validating potential hits identified from the MCF-7 screen in other cancer cell lines.
Using a CRISPR-based large-scale screen, Gilad et al. identify the genes that show synthetic lethality with an SRC-3 inhibitor in breast cancer cells while contrasting this with the estrogen receptor degrader fulvestrant. This study provides insights into the development of therapeutic strategies for cancer forms that involve SRC-3. |
doi_str_mv | 10.1038/s42003-021-01929-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000635256600004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6fce305479b5409cbdcf3ff5d35853b8</doaj_id><sourcerecordid>2506284482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-f7a456be4096856611a664c05bc1c7a9867a7116cbe7a61e8f0f3525e74bca143</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rLuH_BCAt4IUk2ar-ZGWIofAwvKrF6HND2dydBpZpNUmX9vZrqOu14sXvXQPO-bc07eonhJ8DuCaf0-sgpjWuKKlJioSpXkSXFeUaVKKlj19F59VlzGuME4Y0oJyp4XZ5RKISmn58XtFVrB6LdQRmsGQM1ycfNtiRoTFeqC3_kpoWgDwIhcB2NyvYOI4n5Ma0guS4Y9GiCtzYCSCStIEbkR3SybkuZi7VqXoEPWjBYCsjAM8UXxrDdDhMu770Xx49PH782X8vrr50VzdV1aLupU9tIwLlpgWImaC0GIEYJZzFtLrDSqFtJIQoRtQRpBoO5xT3nFQbLWGsLoRbGYfTtvNnoX3NaEvfbG6eMPH1bahDzCAFr0FijmTKqW5_ts29me9j3vKK85bevs9WH22k3tFjqbFxHM8MD04cno1nrlf2qpFFP40MybO4PgbyeISW9dPKzDjOCnqCuORVUzVlcZff0PuvFTGPOqdCUxFaqSrH6U4ji75WtlpqqZssHHGKA_tUywPsRIzzHSOUb6GCNNsujV_WFPkj-hycDbGfgFre-jdZBf94TloInDQwiRq-Po9f_TjUsmOT82fhpTltJZGjM-riD8HfKR_n8DLQXyFg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505064907</pqid></control><display><type>article</type><title>A genome-scale CRISPR Cas9 dropout screen identifies synthetically lethal targets in SRC-3 inhibited cancer cells</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><creator>Gilad, Yosi ; Eliaz, Yossi ; Yu, Yang ; Dean, Adam M. ; Han, San Jung ; Qin, Li ; O’Malley, Bert W. ; Lonard, David M.</creator><creatorcontrib>Gilad, Yosi ; Eliaz, Yossi ; Yu, Yang ; Dean, Adam M. ; Han, San Jung ; Qin, Li ; O’Malley, Bert W. ; Lonard, David M.</creatorcontrib><description>Steroid receptor coactivator 3 (SRC-3/NCoA3/AIB1), is a key regulator of gene transcription and it plays a central role in breast cancer (BC) tumorigenesis, making it a potential therapeutic target. Beyond its function as an important regulator of estrogen receptor transcriptional activity, SRC-3 also functions as a coactivator for a wide range of other transcription factors, suggesting SRC-3 inhibition can be beneficial in hormone-independent cancers as well. The recent discovery of a potent SRC-3 small molecule inhibitor, SI-2, enabled the further development of additional related compounds. SI-12 is an improved version of SI-2 that like SI-2 has anti-proliferative activity in various cancer types, including BC. Here, we sought to identify gene targets, that when inhibited in the presence of SI-12, would lead to enhanced BC cell cytotoxicity. We performed a genome-scale CRISPR-Cas9 screen in MCF-7 BC cells under conditions of pharmacological pressure with SI-12. A parallel screen was performed with an ER inhibitor, fulvestrant, to shed light on both common and distinct activities between SRC-3 and ERα inhibition. Bearing in mind the key role of SRC-3 in tumorigenesis of other types of cancer, we extended our study by validating potential hits identified from the MCF-7 screen in other cancer cell lines.
Using a CRISPR-based large-scale screen, Gilad et al. identify the genes that show synthetic lethality with an SRC-3 inhibitor in breast cancer cells while contrasting this with the estrogen receptor degrader fulvestrant. This study provides insights into the development of therapeutic strategies for cancer forms that involve SRC-3.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-021-01929-1</identifier><identifier>PMID: 33767353</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/89 ; 631/154/1435 ; 631/67/1347 ; 631/67/2322 ; Biology ; Biomedical and Life Sciences ; Breast cancer ; Cell Line, Tumor ; CRISPR ; CRISPR-Cas Systems ; Cytotoxicity ; Estrogen receptors ; Estrogens ; Fulvestrant ; Genomes ; Humans ; Lethality ; Life Sciences ; Life Sciences & Biomedicine ; Life Sciences & Biomedicine - Other Topics ; MCF-7 Cells ; Multidisciplinary Sciences ; Nuclear Receptor Coactivator 3 - genetics ; Nuclear Receptor Coactivator 3 - metabolism ; Science & Technology ; Science & Technology - Other Topics ; Therapeutic targets ; Transcription factors ; Tumor cell lines ; Tumorigenesis</subject><ispartof>Communications biology, 2021-03, Vol.4 (1), p.399-399, Article 399</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000635256600004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c568t-f7a456be4096856611a664c05bc1c7a9867a7116cbe7a61e8f0f3525e74bca143</citedby><cites>FETCH-LOGICAL-c568t-f7a456be4096856611a664c05bc1c7a9867a7116cbe7a61e8f0f3525e74bca143</cites><orcidid>0000-0003-3692-6756 ; 0000-0002-8476-3800 ; 0000-0003-3332-1399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994904/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994904/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33767353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilad, Yosi</creatorcontrib><creatorcontrib>Eliaz, Yossi</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Dean, Adam M.</creatorcontrib><creatorcontrib>Han, San Jung</creatorcontrib><creatorcontrib>Qin, Li</creatorcontrib><creatorcontrib>O’Malley, Bert W.</creatorcontrib><creatorcontrib>Lonard, David M.</creatorcontrib><title>A genome-scale CRISPR Cas9 dropout screen identifies synthetically lethal targets in SRC-3 inhibited cancer cells</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>COMMUN BIOL</addtitle><addtitle>Commun Biol</addtitle><description>Steroid receptor coactivator 3 (SRC-3/NCoA3/AIB1), is a key regulator of gene transcription and it plays a central role in breast cancer (BC) tumorigenesis, making it a potential therapeutic target. Beyond its function as an important regulator of estrogen receptor transcriptional activity, SRC-3 also functions as a coactivator for a wide range of other transcription factors, suggesting SRC-3 inhibition can be beneficial in hormone-independent cancers as well. The recent discovery of a potent SRC-3 small molecule inhibitor, SI-2, enabled the further development of additional related compounds. SI-12 is an improved version of SI-2 that like SI-2 has anti-proliferative activity in various cancer types, including BC. Here, we sought to identify gene targets, that when inhibited in the presence of SI-12, would lead to enhanced BC cell cytotoxicity. We performed a genome-scale CRISPR-Cas9 screen in MCF-7 BC cells under conditions of pharmacological pressure with SI-12. A parallel screen was performed with an ER inhibitor, fulvestrant, to shed light on both common and distinct activities between SRC-3 and ERα inhibition. Bearing in mind the key role of SRC-3 in tumorigenesis of other types of cancer, we extended our study by validating potential hits identified from the MCF-7 screen in other cancer cell lines.
Using a CRISPR-based large-scale screen, Gilad et al. identify the genes that show synthetic lethality with an SRC-3 inhibitor in breast cancer cells while contrasting this with the estrogen receptor degrader fulvestrant. This study provides insights into the development of therapeutic strategies for cancer forms that involve SRC-3.</description><subject>13/89</subject><subject>631/154/1435</subject><subject>631/67/1347</subject><subject>631/67/2322</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Breast cancer</subject><subject>Cell Line, Tumor</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Cytotoxicity</subject><subject>Estrogen receptors</subject><subject>Estrogens</subject><subject>Fulvestrant</subject><subject>Genomes</subject><subject>Humans</subject><subject>Lethality</subject><subject>Life Sciences</subject><subject>Life Sciences & Biomedicine</subject><subject>Life Sciences & Biomedicine - Other Topics</subject><subject>MCF-7 Cells</subject><subject>Multidisciplinary Sciences</subject><subject>Nuclear Receptor Coactivator 3 - genetics</subject><subject>Nuclear Receptor Coactivator 3 - metabolism</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Therapeutic targets</subject><subject>Transcription factors</subject><subject>Tumor cell lines</subject><subject>Tumorigenesis</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rLuH_BCAt4IUk2ar-ZGWIofAwvKrF6HND2dydBpZpNUmX9vZrqOu14sXvXQPO-bc07eonhJ8DuCaf0-sgpjWuKKlJioSpXkSXFeUaVKKlj19F59VlzGuME4Y0oJyp4XZ5RKISmn58XtFVrB6LdQRmsGQM1ycfNtiRoTFeqC3_kpoWgDwIhcB2NyvYOI4n5Ma0guS4Y9GiCtzYCSCStIEbkR3SybkuZi7VqXoEPWjBYCsjAM8UXxrDdDhMu770Xx49PH782X8vrr50VzdV1aLupU9tIwLlpgWImaC0GIEYJZzFtLrDSqFtJIQoRtQRpBoO5xT3nFQbLWGsLoRbGYfTtvNnoX3NaEvfbG6eMPH1bahDzCAFr0FijmTKqW5_ts29me9j3vKK85bevs9WH22k3tFjqbFxHM8MD04cno1nrlf2qpFFP40MybO4PgbyeISW9dPKzDjOCnqCuORVUzVlcZff0PuvFTGPOqdCUxFaqSrH6U4ji75WtlpqqZssHHGKA_tUywPsRIzzHSOUb6GCNNsujV_WFPkj-hycDbGfgFre-jdZBf94TloInDQwiRq-Po9f_TjUsmOT82fhpTltJZGjM-riD8HfKR_n8DLQXyFg</recordid><startdate>20210325</startdate><enddate>20210325</enddate><creator>Gilad, Yosi</creator><creator>Eliaz, Yossi</creator><creator>Yu, Yang</creator><creator>Dean, Adam M.</creator><creator>Han, San Jung</creator><creator>Qin, Li</creator><creator>O’Malley, Bert W.</creator><creator>Lonard, David M.</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3692-6756</orcidid><orcidid>https://orcid.org/0000-0002-8476-3800</orcidid><orcidid>https://orcid.org/0000-0003-3332-1399</orcidid></search><sort><creationdate>20210325</creationdate><title>A genome-scale CRISPR Cas9 dropout screen identifies synthetically lethal targets in SRC-3 inhibited cancer cells</title><author>Gilad, Yosi ; Eliaz, Yossi ; Yu, Yang ; Dean, Adam M. ; Han, San Jung ; Qin, Li ; O’Malley, Bert W. ; Lonard, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-f7a456be4096856611a664c05bc1c7a9867a7116cbe7a61e8f0f3525e74bca143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/89</topic><topic>631/154/1435</topic><topic>631/67/1347</topic><topic>631/67/2322</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Breast cancer</topic><topic>Cell Line, Tumor</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Cytotoxicity</topic><topic>Estrogen receptors</topic><topic>Estrogens</topic><topic>Fulvestrant</topic><topic>Genomes</topic><topic>Humans</topic><topic>Lethality</topic><topic>Life Sciences</topic><topic>Life Sciences & Biomedicine</topic><topic>Life Sciences & Biomedicine - Other Topics</topic><topic>MCF-7 Cells</topic><topic>Multidisciplinary Sciences</topic><topic>Nuclear Receptor Coactivator 3 - genetics</topic><topic>Nuclear Receptor Coactivator 3 - metabolism</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Therapeutic targets</topic><topic>Transcription factors</topic><topic>Tumor cell lines</topic><topic>Tumorigenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilad, Yosi</creatorcontrib><creatorcontrib>Eliaz, Yossi</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Dean, Adam M.</creatorcontrib><creatorcontrib>Han, San Jung</creatorcontrib><creatorcontrib>Qin, Li</creatorcontrib><creatorcontrib>O’Malley, Bert W.</creatorcontrib><creatorcontrib>Lonard, David M.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilad, Yosi</au><au>Eliaz, Yossi</au><au>Yu, Yang</au><au>Dean, Adam M.</au><au>Han, San Jung</au><au>Qin, Li</au><au>O’Malley, Bert W.</au><au>Lonard, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A genome-scale CRISPR Cas9 dropout screen identifies synthetically lethal targets in SRC-3 inhibited cancer cells</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><stitle>COMMUN BIOL</stitle><addtitle>Commun Biol</addtitle><date>2021-03-25</date><risdate>2021</risdate><volume>4</volume><issue>1</issue><spage>399</spage><epage>399</epage><pages>399-399</pages><artnum>399</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Steroid receptor coactivator 3 (SRC-3/NCoA3/AIB1), is a key regulator of gene transcription and it plays a central role in breast cancer (BC) tumorigenesis, making it a potential therapeutic target. Beyond its function as an important regulator of estrogen receptor transcriptional activity, SRC-3 also functions as a coactivator for a wide range of other transcription factors, suggesting SRC-3 inhibition can be beneficial in hormone-independent cancers as well. The recent discovery of a potent SRC-3 small molecule inhibitor, SI-2, enabled the further development of additional related compounds. SI-12 is an improved version of SI-2 that like SI-2 has anti-proliferative activity in various cancer types, including BC. Here, we sought to identify gene targets, that when inhibited in the presence of SI-12, would lead to enhanced BC cell cytotoxicity. We performed a genome-scale CRISPR-Cas9 screen in MCF-7 BC cells under conditions of pharmacological pressure with SI-12. A parallel screen was performed with an ER inhibitor, fulvestrant, to shed light on both common and distinct activities between SRC-3 and ERα inhibition. Bearing in mind the key role of SRC-3 in tumorigenesis of other types of cancer, we extended our study by validating potential hits identified from the MCF-7 screen in other cancer cell lines.
Using a CRISPR-based large-scale screen, Gilad et al. identify the genes that show synthetic lethality with an SRC-3 inhibitor in breast cancer cells while contrasting this with the estrogen receptor degrader fulvestrant. This study provides insights into the development of therapeutic strategies for cancer forms that involve SRC-3.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33767353</pmid><doi>10.1038/s42003-021-01929-1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3692-6756</orcidid><orcidid>https://orcid.org/0000-0002-8476-3800</orcidid><orcidid>https://orcid.org/0000-0003-3332-1399</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-3642 |
ispartof | Communications biology, 2021-03, Vol.4 (1), p.399-399, Article 399 |
issn | 2399-3642 2399-3642 |
language | eng |
recordid | cdi_webofscience_primary_000635256600004 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Nature Free; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals |
subjects | 13/89 631/154/1435 631/67/1347 631/67/2322 Biology Biomedical and Life Sciences Breast cancer Cell Line, Tumor CRISPR CRISPR-Cas Systems Cytotoxicity Estrogen receptors Estrogens Fulvestrant Genomes Humans Lethality Life Sciences Life Sciences & Biomedicine Life Sciences & Biomedicine - Other Topics MCF-7 Cells Multidisciplinary Sciences Nuclear Receptor Coactivator 3 - genetics Nuclear Receptor Coactivator 3 - metabolism Science & Technology Science & Technology - Other Topics Therapeutic targets Transcription factors Tumor cell lines Tumorigenesis |
title | A genome-scale CRISPR Cas9 dropout screen identifies synthetically lethal targets in SRC-3 inhibited cancer cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T09%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20genome-scale%20CRISPR%20Cas9%20dropout%20screen%20identifies%20synthetically%20lethal%20targets%20in%20SRC-3%20inhibited%20cancer%20cells&rft.jtitle=Communications%20biology&rft.au=Gilad,%20Yosi&rft.date=2021-03-25&rft.volume=4&rft.issue=1&rft.spage=399&rft.epage=399&rft.pages=399-399&rft.artnum=399&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-021-01929-1&rft_dat=%3Cproquest_webof%3E2506284482%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505064907&rft_id=info:pmid/33767353&rft_doaj_id=oai_doaj_org_article_6fce305479b5409cbdcf3ff5d35853b8&rfr_iscdi=true |