Construction of Cu3P-ZnSnO3-g-C3N4 p-n-n heterojunction with multiple built-in electric fields for effectively boosting visible-light photocatalytic degradation of broad-spectrum antibiotics

•Cu3P-ZnSnO3-g-C3N4 p-n-n heterojunction was synthesized by a solvothermal route.•Cu3P-ZnSnO3-g-C3N4 shows outstanding visible-light photocatalytic activity.•Multiple built-in electric fields in heterojunction facilitate charge transfer. The design of advanced semiconductor photocatalysts is an effe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Separation and purification technology 2021-06, Vol.265, p.118477, Article 118477
Hauptverfasser: Guo, Feng, Huang, Xiliu, Chen, Zhihao, Cao, Longwen, Cheng, Xiaofang, Chen, Lizhuang, Shi, Weilong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118477
container_title Separation and purification technology
container_volume 265
creator Guo, Feng
Huang, Xiliu
Chen, Zhihao
Cao, Longwen
Cheng, Xiaofang
Chen, Lizhuang
Shi, Weilong
description •Cu3P-ZnSnO3-g-C3N4 p-n-n heterojunction was synthesized by a solvothermal route.•Cu3P-ZnSnO3-g-C3N4 shows outstanding visible-light photocatalytic activity.•Multiple built-in electric fields in heterojunction facilitate charge transfer. The design of advanced semiconductor photocatalysts is an effective approach to promote environmental remediation. The p-n-n heterojunction photocatalyst has a strong built-in electric field in the photocatalytic reaction, which provides an effective space for the separation of photo-generated carriers, thereby achieving high-efficient photocatalytic activity. Herein, a facile solvothermal method was developed to manufacture a unique Cu3P-ZSO-CN p-n-n heterojunction photocatalyst for the photodegradation of broad-spectrum antibiotics under visible light irradiation. Benefiting from the novel p-n-n heterojunction structure, the obtained 5% Cu3P-ZSO-CN photocatalyst exhibits the highest degradation efficiency, and the degradation rates for tetracycline (TC), oxytetracycline (OTC), chlortetracycline (CTC) and ciprofloxacin (CIP) are assigned to 98.45%, 54.71%, 63.52% and 87.57%, respectively. Furthermore, based on the detection of intermediate products via liquid chromatography mass spectrometry (LC-MS), the possible photodegradation pathway of TC was analyzed. Finally, the possible Cu3P-ZSO-CN p-n-n heterojunction photocatalytic reaction mechanism was revealed in detail by the examination of optical properties and capturing experiments of active species. This work provides a new perspective for the application of p-n-n heterojunction photocatalysts in environmental remediation.
doi_str_mv 10.1016/j.seppur.2021.118477
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_seppur_2021_118477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1383586621001799</els_id><sourcerecordid>S1383586621001799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-3d0156ee27e45f9aa0ce432cc2137594063e46e68bb7331fc85eb89d5a286c593</originalsourceid><addsrcrecordid>eNp9kU2K3DAQhU3IQCYzc4MsdAF1JMuW5U0gmPzBkAkk2cxGyHKpuxq1ZCS5Q18uZ4sbJ9usqijee7ziq6o3nO044_LtcZdhnpe0q1nNd5yrputeVLdcdYKKrm9errtQgrZKylfV65yPjPGOq_q2-j3EkEtabMEYSHRkWMQ3-hy-hydB93QQXxsy00ADOUCBFI9L2KS_sBzIafEFZw9kXNAXioGAB1sSWuIQ_JSJi4mAc-sRz-AvZIwxFwx7csaMowfqcX8oZD7EEq0pxl_Kap5gn8xk_nUaUzQTzfM1ejkREwqOGFdhvq9unPEZHv7Ou-rnxw8_hs_08enTl-H9I7WCyULFxHgrAeoOmtb1xjALjaitrbno2r5hUkAjQapx7ITgzqoWRtVPramVtG0v7qpmy7Up5pzA6TnhyaSL5kxfGeij3hjoKwO9MVht7zYbrN3OCElnixAsTJjWZ_QU8f8BfwDZIpc0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Construction of Cu3P-ZnSnO3-g-C3N4 p-n-n heterojunction with multiple built-in electric fields for effectively boosting visible-light photocatalytic degradation of broad-spectrum antibiotics</title><source>Access via ScienceDirect (Elsevier)</source><creator>Guo, Feng ; Huang, Xiliu ; Chen, Zhihao ; Cao, Longwen ; Cheng, Xiaofang ; Chen, Lizhuang ; Shi, Weilong</creator><creatorcontrib>Guo, Feng ; Huang, Xiliu ; Chen, Zhihao ; Cao, Longwen ; Cheng, Xiaofang ; Chen, Lizhuang ; Shi, Weilong</creatorcontrib><description>•Cu3P-ZnSnO3-g-C3N4 p-n-n heterojunction was synthesized by a solvothermal route.•Cu3P-ZnSnO3-g-C3N4 shows outstanding visible-light photocatalytic activity.•Multiple built-in electric fields in heterojunction facilitate charge transfer. The design of advanced semiconductor photocatalysts is an effective approach to promote environmental remediation. The p-n-n heterojunction photocatalyst has a strong built-in electric field in the photocatalytic reaction, which provides an effective space for the separation of photo-generated carriers, thereby achieving high-efficient photocatalytic activity. Herein, a facile solvothermal method was developed to manufacture a unique Cu3P-ZSO-CN p-n-n heterojunction photocatalyst for the photodegradation of broad-spectrum antibiotics under visible light irradiation. Benefiting from the novel p-n-n heterojunction structure, the obtained 5% Cu3P-ZSO-CN photocatalyst exhibits the highest degradation efficiency, and the degradation rates for tetracycline (TC), oxytetracycline (OTC), chlortetracycline (CTC) and ciprofloxacin (CIP) are assigned to 98.45%, 54.71%, 63.52% and 87.57%, respectively. Furthermore, based on the detection of intermediate products via liquid chromatography mass spectrometry (LC-MS), the possible photodegradation pathway of TC was analyzed. Finally, the possible Cu3P-ZSO-CN p-n-n heterojunction photocatalytic reaction mechanism was revealed in detail by the examination of optical properties and capturing experiments of active species. This work provides a new perspective for the application of p-n-n heterojunction photocatalysts in environmental remediation.</description><identifier>ISSN: 1383-5866</identifier><identifier>EISSN: 1873-3794</identifier><identifier>DOI: 10.1016/j.seppur.2021.118477</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Cu3P ; G-C3N4 ; p-n-n heterojunction ; Photocatalytic activity ; ZnSnO3</subject><ispartof>Separation and purification technology, 2021-06, Vol.265, p.118477, Article 118477</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-3d0156ee27e45f9aa0ce432cc2137594063e46e68bb7331fc85eb89d5a286c593</citedby><cites>FETCH-LOGICAL-c306t-3d0156ee27e45f9aa0ce432cc2137594063e46e68bb7331fc85eb89d5a286c593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.seppur.2021.118477$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Guo, Feng</creatorcontrib><creatorcontrib>Huang, Xiliu</creatorcontrib><creatorcontrib>Chen, Zhihao</creatorcontrib><creatorcontrib>Cao, Longwen</creatorcontrib><creatorcontrib>Cheng, Xiaofang</creatorcontrib><creatorcontrib>Chen, Lizhuang</creatorcontrib><creatorcontrib>Shi, Weilong</creatorcontrib><title>Construction of Cu3P-ZnSnO3-g-C3N4 p-n-n heterojunction with multiple built-in electric fields for effectively boosting visible-light photocatalytic degradation of broad-spectrum antibiotics</title><title>Separation and purification technology</title><description>•Cu3P-ZnSnO3-g-C3N4 p-n-n heterojunction was synthesized by a solvothermal route.•Cu3P-ZnSnO3-g-C3N4 shows outstanding visible-light photocatalytic activity.•Multiple built-in electric fields in heterojunction facilitate charge transfer. The design of advanced semiconductor photocatalysts is an effective approach to promote environmental remediation. The p-n-n heterojunction photocatalyst has a strong built-in electric field in the photocatalytic reaction, which provides an effective space for the separation of photo-generated carriers, thereby achieving high-efficient photocatalytic activity. Herein, a facile solvothermal method was developed to manufacture a unique Cu3P-ZSO-CN p-n-n heterojunction photocatalyst for the photodegradation of broad-spectrum antibiotics under visible light irradiation. Benefiting from the novel p-n-n heterojunction structure, the obtained 5% Cu3P-ZSO-CN photocatalyst exhibits the highest degradation efficiency, and the degradation rates for tetracycline (TC), oxytetracycline (OTC), chlortetracycline (CTC) and ciprofloxacin (CIP) are assigned to 98.45%, 54.71%, 63.52% and 87.57%, respectively. Furthermore, based on the detection of intermediate products via liquid chromatography mass spectrometry (LC-MS), the possible photodegradation pathway of TC was analyzed. Finally, the possible Cu3P-ZSO-CN p-n-n heterojunction photocatalytic reaction mechanism was revealed in detail by the examination of optical properties and capturing experiments of active species. This work provides a new perspective for the application of p-n-n heterojunction photocatalysts in environmental remediation.</description><subject>Cu3P</subject><subject>G-C3N4</subject><subject>p-n-n heterojunction</subject><subject>Photocatalytic activity</subject><subject>ZnSnO3</subject><issn>1383-5866</issn><issn>1873-3794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU2K3DAQhU3IQCYzc4MsdAF1JMuW5U0gmPzBkAkk2cxGyHKpuxq1ZCS5Q18uZ4sbJ9usqijee7ziq6o3nO044_LtcZdhnpe0q1nNd5yrputeVLdcdYKKrm9errtQgrZKylfV65yPjPGOq_q2-j3EkEtabMEYSHRkWMQ3-hy-hydB93QQXxsy00ADOUCBFI9L2KS_sBzIafEFZw9kXNAXioGAB1sSWuIQ_JSJi4mAc-sRz-AvZIwxFwx7csaMowfqcX8oZD7EEq0pxl_Kap5gn8xk_nUaUzQTzfM1ejkREwqOGFdhvq9unPEZHv7Ou-rnxw8_hs_08enTl-H9I7WCyULFxHgrAeoOmtb1xjALjaitrbno2r5hUkAjQapx7ITgzqoWRtVPramVtG0v7qpmy7Up5pzA6TnhyaSL5kxfGeij3hjoKwO9MVht7zYbrN3OCElnixAsTJjWZ_QU8f8BfwDZIpc0</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Guo, Feng</creator><creator>Huang, Xiliu</creator><creator>Chen, Zhihao</creator><creator>Cao, Longwen</creator><creator>Cheng, Xiaofang</creator><creator>Chen, Lizhuang</creator><creator>Shi, Weilong</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210615</creationdate><title>Construction of Cu3P-ZnSnO3-g-C3N4 p-n-n heterojunction with multiple built-in electric fields for effectively boosting visible-light photocatalytic degradation of broad-spectrum antibiotics</title><author>Guo, Feng ; Huang, Xiliu ; Chen, Zhihao ; Cao, Longwen ; Cheng, Xiaofang ; Chen, Lizhuang ; Shi, Weilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-3d0156ee27e45f9aa0ce432cc2137594063e46e68bb7331fc85eb89d5a286c593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cu3P</topic><topic>G-C3N4</topic><topic>p-n-n heterojunction</topic><topic>Photocatalytic activity</topic><topic>ZnSnO3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Feng</creatorcontrib><creatorcontrib>Huang, Xiliu</creatorcontrib><creatorcontrib>Chen, Zhihao</creatorcontrib><creatorcontrib>Cao, Longwen</creatorcontrib><creatorcontrib>Cheng, Xiaofang</creatorcontrib><creatorcontrib>Chen, Lizhuang</creatorcontrib><creatorcontrib>Shi, Weilong</creatorcontrib><collection>CrossRef</collection><jtitle>Separation and purification technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Feng</au><au>Huang, Xiliu</au><au>Chen, Zhihao</au><au>Cao, Longwen</au><au>Cheng, Xiaofang</au><au>Chen, Lizhuang</au><au>Shi, Weilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of Cu3P-ZnSnO3-g-C3N4 p-n-n heterojunction with multiple built-in electric fields for effectively boosting visible-light photocatalytic degradation of broad-spectrum antibiotics</atitle><jtitle>Separation and purification technology</jtitle><date>2021-06-15</date><risdate>2021</risdate><volume>265</volume><spage>118477</spage><pages>118477-</pages><artnum>118477</artnum><issn>1383-5866</issn><eissn>1873-3794</eissn><abstract>•Cu3P-ZnSnO3-g-C3N4 p-n-n heterojunction was synthesized by a solvothermal route.•Cu3P-ZnSnO3-g-C3N4 shows outstanding visible-light photocatalytic activity.•Multiple built-in electric fields in heterojunction facilitate charge transfer. The design of advanced semiconductor photocatalysts is an effective approach to promote environmental remediation. The p-n-n heterojunction photocatalyst has a strong built-in electric field in the photocatalytic reaction, which provides an effective space for the separation of photo-generated carriers, thereby achieving high-efficient photocatalytic activity. Herein, a facile solvothermal method was developed to manufacture a unique Cu3P-ZSO-CN p-n-n heterojunction photocatalyst for the photodegradation of broad-spectrum antibiotics under visible light irradiation. Benefiting from the novel p-n-n heterojunction structure, the obtained 5% Cu3P-ZSO-CN photocatalyst exhibits the highest degradation efficiency, and the degradation rates for tetracycline (TC), oxytetracycline (OTC), chlortetracycline (CTC) and ciprofloxacin (CIP) are assigned to 98.45%, 54.71%, 63.52% and 87.57%, respectively. Furthermore, based on the detection of intermediate products via liquid chromatography mass spectrometry (LC-MS), the possible photodegradation pathway of TC was analyzed. Finally, the possible Cu3P-ZSO-CN p-n-n heterojunction photocatalytic reaction mechanism was revealed in detail by the examination of optical properties and capturing experiments of active species. This work provides a new perspective for the application of p-n-n heterojunction photocatalysts in environmental remediation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.seppur.2021.118477</doi></addata></record>
fulltext fulltext
identifier ISSN: 1383-5866
ispartof Separation and purification technology, 2021-06, Vol.265, p.118477, Article 118477
issn 1383-5866
1873-3794
language eng
recordid cdi_crossref_primary_10_1016_j_seppur_2021_118477
source Access via ScienceDirect (Elsevier)
subjects Cu3P
G-C3N4
p-n-n heterojunction
Photocatalytic activity
ZnSnO3
title Construction of Cu3P-ZnSnO3-g-C3N4 p-n-n heterojunction with multiple built-in electric fields for effectively boosting visible-light photocatalytic degradation of broad-spectrum antibiotics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20Cu3P-ZnSnO3-g-C3N4%20p-n-n%20heterojunction%20with%20multiple%20built-in%20electric%20fields%20for%20effectively%20boosting%20visible-light%20photocatalytic%20degradation%20of%20broad-spectrum%20antibiotics&rft.jtitle=Separation%20and%20purification%20technology&rft.au=Guo,%20Feng&rft.date=2021-06-15&rft.volume=265&rft.spage=118477&rft.pages=118477-&rft.artnum=118477&rft.issn=1383-5866&rft.eissn=1873-3794&rft_id=info:doi/10.1016/j.seppur.2021.118477&rft_dat=%3Celsevier_cross%3ES1383586621001799%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1383586621001799&rfr_iscdi=true