Constrained Least Mean M-Estimation Adaptive Filtering Algorithm

In many applications, the constrained adaptive filtering algorithm has been widely studied. The classical constrained LMS algorithm is widely used because of its low computational complexity. However, the performance of constrained LMS algorithm will degrade under correlated input or non-Gaussian no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2021-04, Vol.68 (4), p.1507-1511
Hauptverfasser: Wang, Zhuonan, Zhao, Haiquan, Zeng, Xiangping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1511
container_issue 4
container_start_page 1507
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 68
creator Wang, Zhuonan
Zhao, Haiquan
Zeng, Xiangping
description In many applications, the constrained adaptive filtering algorithm has been widely studied. The classical constrained LMS algorithm is widely used because of its low computational complexity. However, the performance of constrained LMS algorithm will degrade under correlated input or non-Gaussian noise. In order to overcome this defect, this brief proposes a constrained least mean M-estimation (CLMM) algorithm, which uses the M-estimation cost function for the constrained adaptive filter. Compared with the previous algorithms for non-Gaussian noise, such as constrained maximum correntropy criterion (CMCC) algorithm and constrained minimum error entropy (CMEE) algorithm, the proposed CLMM algorithm has lower computational complexity and better steady-state performance. In addition, the step-size range is determined by analyzing the mean square stability, which ensures the stability of the proposed CLMM algorithm. Simulation results illustrate that the proposed CLMM algorithm has better steady-state performance than previous algorithms in non-Gaussian noises with multi-peak distribution.
doi_str_mv 10.1109/TCSII.2020.3022081
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_webofscience_primary_000634501300090CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9187213</ieee_id><sourcerecordid>2506604092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-f68a31618e655258dbb3ab906336d9f908ffc2d9720aa9a10b99b04f7cc0b9a3</originalsourceid><addsrcrecordid>eNqNkEFPwjAYhhujiYj-Ab0s8WiGX9t1a2-SBZQE4kHuTbd1WAIdtkXjv7cwoldPfQ_v8339HoRuMYwwBvG4LN9msxEBAiMKhADHZ2iAGeMpLQQ-P-RMpEWRFZfoyvs1ABFAyQA9lZ31wSljdZPMtfIhWWhlk0U68cFsVTCdTcaN2gXzqZOp2QTtjF0l482qcya8b6_RRas2Xt-c3iFaTifL8iWdvz7PyvE8rYlgIW1zrijOMdc5Y4TxpqqoqgTklOaNaAXwtq1JIwoCSgmFoRKigqwt6jpGRYfovh-7c93HXvsg193e2bhREgZ5DhkIElukb9Wu897pVu5cPMJ9SwzyIEoeRcmDKHkSFSHeQ1-66lpfG21r_QsCxD9mDDCNSUBpwtFJ2e1tiOjD_9HYvuvbRuu_lsC8IJjSH5UnhB8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506604092</pqid></control><display><type>article</type><title>Constrained Least Mean M-Estimation Adaptive Filtering Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Zhuonan ; Zhao, Haiquan ; Zeng, Xiangping</creator><creatorcontrib>Wang, Zhuonan ; Zhao, Haiquan ; Zeng, Xiangping</creatorcontrib><description>In many applications, the constrained adaptive filtering algorithm has been widely studied. The classical constrained LMS algorithm is widely used because of its low computational complexity. However, the performance of constrained LMS algorithm will degrade under correlated input or non-Gaussian noise. In order to overcome this defect, this brief proposes a constrained least mean M-estimation (CLMM) algorithm, which uses the M-estimation cost function for the constrained adaptive filter. Compared with the previous algorithms for non-Gaussian noise, such as constrained maximum correntropy criterion (CMCC) algorithm and constrained minimum error entropy (CMEE) algorithm, the proposed CLMM algorithm has lower computational complexity and better steady-state performance. In addition, the step-size range is determined by analyzing the mean square stability, which ensures the stability of the proposed CLMM algorithm. Simulation results illustrate that the proposed CLMM algorithm has better steady-state performance than previous algorithms in non-Gaussian noises with multi-peak distribution.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2020.3022081</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Adaptive algorithms ; Adaptive filters ; Adaptive systems ; Algorithms ; Circuit stability ; Complexity ; Computational complexity ; Constrained adaptive filtering ; Cost function ; Engineering ; Engineering, Electrical &amp; Electronic ; Filtering algorithms ; M-estimate ; Mathematical model ; non-Gaussian noises ; Random noise ; Science &amp; Technology ; Stability analysis ; Steady state ; system identification ; Technology</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2021-04, Vol.68 (4), p.1507-1511</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>29</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000634501300090</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c295t-f68a31618e655258dbb3ab906336d9f908ffc2d9720aa9a10b99b04f7cc0b9a3</citedby><cites>FETCH-LOGICAL-c295t-f68a31618e655258dbb3ab906336d9f908ffc2d9720aa9a10b99b04f7cc0b9a3</cites><orcidid>0000-0001-7246-5155 ; 0000-0001-8721-2548 ; 0000-0003-0198-1384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9187213$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,39263,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9187213$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Zhuonan</creatorcontrib><creatorcontrib>Zhao, Haiquan</creatorcontrib><creatorcontrib>Zeng, Xiangping</creatorcontrib><title>Constrained Least Mean M-Estimation Adaptive Filtering Algorithm</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><addtitle>IEEE T CIRCUITS-II</addtitle><description>In many applications, the constrained adaptive filtering algorithm has been widely studied. The classical constrained LMS algorithm is widely used because of its low computational complexity. However, the performance of constrained LMS algorithm will degrade under correlated input or non-Gaussian noise. In order to overcome this defect, this brief proposes a constrained least mean M-estimation (CLMM) algorithm, which uses the M-estimation cost function for the constrained adaptive filter. Compared with the previous algorithms for non-Gaussian noise, such as constrained maximum correntropy criterion (CMCC) algorithm and constrained minimum error entropy (CMEE) algorithm, the proposed CLMM algorithm has lower computational complexity and better steady-state performance. In addition, the step-size range is determined by analyzing the mean square stability, which ensures the stability of the proposed CLMM algorithm. Simulation results illustrate that the proposed CLMM algorithm has better steady-state performance than previous algorithms in non-Gaussian noises with multi-peak distribution.</description><subject>Adaptive algorithms</subject><subject>Adaptive filters</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Circuit stability</subject><subject>Complexity</subject><subject>Computational complexity</subject><subject>Constrained adaptive filtering</subject><subject>Cost function</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Filtering algorithms</subject><subject>M-estimate</subject><subject>Mathematical model</subject><subject>non-Gaussian noises</subject><subject>Random noise</subject><subject>Science &amp; Technology</subject><subject>Stability analysis</subject><subject>Steady state</subject><subject>system identification</subject><subject>Technology</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkEFPwjAYhhujiYj-Ab0s8WiGX9t1a2-SBZQE4kHuTbd1WAIdtkXjv7cwoldPfQ_v8339HoRuMYwwBvG4LN9msxEBAiMKhADHZ2iAGeMpLQQ-P-RMpEWRFZfoyvs1ABFAyQA9lZ31wSljdZPMtfIhWWhlk0U68cFsVTCdTcaN2gXzqZOp2QTtjF0l482qcya8b6_RRas2Xt-c3iFaTifL8iWdvz7PyvE8rYlgIW1zrijOMdc5Y4TxpqqoqgTklOaNaAXwtq1JIwoCSgmFoRKigqwt6jpGRYfovh-7c93HXvsg193e2bhREgZ5DhkIElukb9Wu897pVu5cPMJ9SwzyIEoeRcmDKHkSFSHeQ1-66lpfG21r_QsCxD9mDDCNSUBpwtFJ2e1tiOjD_9HYvuvbRuu_lsC8IJjSH5UnhB8</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Wang, Zhuonan</creator><creator>Zhao, Haiquan</creator><creator>Zeng, Xiangping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7246-5155</orcidid><orcidid>https://orcid.org/0000-0001-8721-2548</orcidid><orcidid>https://orcid.org/0000-0003-0198-1384</orcidid></search><sort><creationdate>20210401</creationdate><title>Constrained Least Mean M-Estimation Adaptive Filtering Algorithm</title><author>Wang, Zhuonan ; Zhao, Haiquan ; Zeng, Xiangping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-f68a31618e655258dbb3ab906336d9f908ffc2d9720aa9a10b99b04f7cc0b9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive filters</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Circuit stability</topic><topic>Complexity</topic><topic>Computational complexity</topic><topic>Constrained adaptive filtering</topic><topic>Cost function</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Filtering algorithms</topic><topic>M-estimate</topic><topic>Mathematical model</topic><topic>non-Gaussian noises</topic><topic>Random noise</topic><topic>Science &amp; Technology</topic><topic>Stability analysis</topic><topic>Steady state</topic><topic>system identification</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhuonan</creatorcontrib><creatorcontrib>Zhao, Haiquan</creatorcontrib><creatorcontrib>Zeng, Xiangping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Zhuonan</au><au>Zhao, Haiquan</au><au>Zeng, Xiangping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constrained Least Mean M-Estimation Adaptive Filtering Algorithm</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><stitle>IEEE T CIRCUITS-II</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>68</volume><issue>4</issue><spage>1507</spage><epage>1511</epage><pages>1507-1511</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>In many applications, the constrained adaptive filtering algorithm has been widely studied. The classical constrained LMS algorithm is widely used because of its low computational complexity. However, the performance of constrained LMS algorithm will degrade under correlated input or non-Gaussian noise. In order to overcome this defect, this brief proposes a constrained least mean M-estimation (CLMM) algorithm, which uses the M-estimation cost function for the constrained adaptive filter. Compared with the previous algorithms for non-Gaussian noise, such as constrained maximum correntropy criterion (CMCC) algorithm and constrained minimum error entropy (CMEE) algorithm, the proposed CLMM algorithm has lower computational complexity and better steady-state performance. In addition, the step-size range is determined by analyzing the mean square stability, which ensures the stability of the proposed CLMM algorithm. Simulation results illustrate that the proposed CLMM algorithm has better steady-state performance than previous algorithms in non-Gaussian noises with multi-peak distribution.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TCSII.2020.3022081</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7246-5155</orcidid><orcidid>https://orcid.org/0000-0001-8721-2548</orcidid><orcidid>https://orcid.org/0000-0003-0198-1384</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2021-04, Vol.68 (4), p.1507-1511
issn 1549-7747
1558-3791
language eng
recordid cdi_webofscience_primary_000634501300090CitationCount
source IEEE Electronic Library (IEL)
subjects Adaptive algorithms
Adaptive filters
Adaptive systems
Algorithms
Circuit stability
Complexity
Computational complexity
Constrained adaptive filtering
Cost function
Engineering
Engineering, Electrical & Electronic
Filtering algorithms
M-estimate
Mathematical model
non-Gaussian noises
Random noise
Science & Technology
Stability analysis
Steady state
system identification
Technology
title Constrained Least Mean M-Estimation Adaptive Filtering Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T17%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constrained%20Least%20Mean%20M-Estimation%20Adaptive%20Filtering%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Wang,%20Zhuonan&rft.date=2021-04-01&rft.volume=68&rft.issue=4&rft.spage=1507&rft.epage=1511&rft.pages=1507-1511&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2020.3022081&rft_dat=%3Cproquest_RIE%3E2506604092%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506604092&rft_id=info:pmid/&rft_ieee_id=9187213&rfr_iscdi=true