Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization
Short-term electrical load forecasting plays an important role in the safety, stability, and sustainability of the power production and scheduling process. An accurate prediction of power load can provide a reliable decision for power system management. To solve the limitation of the existing load f...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2021-03, Vol.14 (6), p.1596, Article 1596 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 1596 |
container_title | Energies (Basel) |
container_volume | 14 |
creator | Jin, Xue-Bo Zheng, Wei-Zhen Kong, Jian-Lei Wang, Xiao-Yi Bai, Yu-Ting Su, Ting-Li Lin, Seng |
description | Short-term electrical load forecasting plays an important role in the safety, stability, and sustainability of the power production and scheduling process. An accurate prediction of power load can provide a reliable decision for power system management. To solve the limitation of the existing load forecasting methods in dealing with time-series data, causing the poor stability and non-ideal forecasting accuracy, this paper proposed an attention-based encoder-decoder network with Bayesian optimization to do the accurate short-term power load forecasting. Proposed model is based on an encoder-decoder architecture with a gated recurrent units (GRU) recurrent neural network with high robustness on time-series data modeling. The temporal attention layer focuses on the key features of input data that play a vital role in promoting the prediction accuracy for load forecasting. Finally, the Bayesian optimization method is used to confirm the model's hyperparameters to achieve optimal predictions. The verification experiments of 24 h load forecasting with real power load data from American Electric Power (AEP) show that the proposed model outperforms other models in terms of prediction accuracy and algorithm stability, providing an effective approach for migrating time-serial power load prediction by deep-learning technology. |
doi_str_mv | 10.3390/en14061596 |
format | Article |
fullrecord | <record><control><sourceid>webofscience_cross</sourceid><recordid>TN_cdi_webofscience_primary_000634425400001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_673e905ebd144313b6744a0bbcced750</doaj_id><sourcerecordid>000634425400001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-7f4228371d1fa66223805d0efd379108f6f9c0aa931d2cfdffd5aa9cf73feb163</originalsourceid><addsrcrecordid>eNqNUU1PwzAMrRBIIODCL8gZVEjqNF2PMMaHNAQHOFdu4kDQSKYkMI1fT7ch4Igvz7aen6z3iuJI8FOAlp-RF5IrUbdqq9gTbatKwRvY_tPvFocpvfKhAAQA7BWLS6J5OSWM3vlndhUiaUx51d9RfgmG2RDZZEY6R6fZQ1hQZNOAhn04ZOc5k88u-PICExk28ToYiuUlrZEtXH5hF7ik5NCz-3l2b-4TVwcHxY7FWaLDb9wvnq4mj-Obcnp_fTs-n5Z6eC-XjZVVNYJGGGFRqaqCEa8NJ2ugaQUfWWVbzRFbEKbS1lhr6mHStgFLvVCwX9xudE3A124e3RvGZRfQdetFiM8dxuz0jDrVALW8pt4IKQd7etVIibzvtSbT1HzQOt5o6RhSimR_9ATvVgl0vwkM5JMNeUF9sEk78pp-DoYEFEhZ1XIVhhjYo_-zxy6vPRyHd5_hC5wHmmw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Jin, Xue-Bo ; Zheng, Wei-Zhen ; Kong, Jian-Lei ; Wang, Xiao-Yi ; Bai, Yu-Ting ; Su, Ting-Li ; Lin, Seng</creator><creatorcontrib>Jin, Xue-Bo ; Zheng, Wei-Zhen ; Kong, Jian-Lei ; Wang, Xiao-Yi ; Bai, Yu-Ting ; Su, Ting-Li ; Lin, Seng</creatorcontrib><description>Short-term electrical load forecasting plays an important role in the safety, stability, and sustainability of the power production and scheduling process. An accurate prediction of power load can provide a reliable decision for power system management. To solve the limitation of the existing load forecasting methods in dealing with time-series data, causing the poor stability and non-ideal forecasting accuracy, this paper proposed an attention-based encoder-decoder network with Bayesian optimization to do the accurate short-term power load forecasting. Proposed model is based on an encoder-decoder architecture with a gated recurrent units (GRU) recurrent neural network with high robustness on time-series data modeling. The temporal attention layer focuses on the key features of input data that play a vital role in promoting the prediction accuracy for load forecasting. Finally, the Bayesian optimization method is used to confirm the model's hyperparameters to achieve optimal predictions. The verification experiments of 24 h load forecasting with real power load data from American Electric Power (AEP) show that the proposed model outperforms other models in terms of prediction accuracy and algorithm stability, providing an effective approach for migrating time-serial power load prediction by deep-learning technology.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en14061596</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Bayesian optimization ; deep-learning encoder-decoder framework ; electric power load prediction ; Energy & Fuels ; gated recurrent neural units ; Science & Technology ; Technology ; temporal attention</subject><ispartof>Energies (Basel), 2021-03, Vol.14 (6), p.1596, Article 1596</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>103</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000634425400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c333t-7f4228371d1fa66223805d0efd379108f6f9c0aa931d2cfdffd5aa9cf73feb163</citedby><cites>FETCH-LOGICAL-c333t-7f4228371d1fa66223805d0efd379108f6f9c0aa931d2cfdffd5aa9cf73feb163</cites><orcidid>0000-0002-2230-0077 ; 0000-0001-8047-1010 ; 0000-0002-0074-3467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Jin, Xue-Bo</creatorcontrib><creatorcontrib>Zheng, Wei-Zhen</creatorcontrib><creatorcontrib>Kong, Jian-Lei</creatorcontrib><creatorcontrib>Wang, Xiao-Yi</creatorcontrib><creatorcontrib>Bai, Yu-Ting</creatorcontrib><creatorcontrib>Su, Ting-Li</creatorcontrib><creatorcontrib>Lin, Seng</creatorcontrib><title>Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization</title><title>Energies (Basel)</title><addtitle>ENERGIES</addtitle><description>Short-term electrical load forecasting plays an important role in the safety, stability, and sustainability of the power production and scheduling process. An accurate prediction of power load can provide a reliable decision for power system management. To solve the limitation of the existing load forecasting methods in dealing with time-series data, causing the poor stability and non-ideal forecasting accuracy, this paper proposed an attention-based encoder-decoder network with Bayesian optimization to do the accurate short-term power load forecasting. Proposed model is based on an encoder-decoder architecture with a gated recurrent units (GRU) recurrent neural network with high robustness on time-series data modeling. The temporal attention layer focuses on the key features of input data that play a vital role in promoting the prediction accuracy for load forecasting. Finally, the Bayesian optimization method is used to confirm the model's hyperparameters to achieve optimal predictions. The verification experiments of 24 h load forecasting with real power load data from American Electric Power (AEP) show that the proposed model outperforms other models in terms of prediction accuracy and algorithm stability, providing an effective approach for migrating time-serial power load prediction by deep-learning technology.</description><subject>Bayesian optimization</subject><subject>deep-learning encoder-decoder framework</subject><subject>electric power load prediction</subject><subject>Energy & Fuels</subject><subject>gated recurrent neural units</subject><subject>Science & Technology</subject><subject>Technology</subject><subject>temporal attention</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNUU1PwzAMrRBIIODCL8gZVEjqNF2PMMaHNAQHOFdu4kDQSKYkMI1fT7ch4Igvz7aen6z3iuJI8FOAlp-RF5IrUbdqq9gTbatKwRvY_tPvFocpvfKhAAQA7BWLS6J5OSWM3vlndhUiaUx51d9RfgmG2RDZZEY6R6fZQ1hQZNOAhn04ZOc5k88u-PICExk28ToYiuUlrZEtXH5hF7ik5NCz-3l2b-4TVwcHxY7FWaLDb9wvnq4mj-Obcnp_fTs-n5Z6eC-XjZVVNYJGGGFRqaqCEa8NJ2ugaQUfWWVbzRFbEKbS1lhr6mHStgFLvVCwX9xudE3A124e3RvGZRfQdetFiM8dxuz0jDrVALW8pt4IKQd7etVIibzvtSbT1HzQOt5o6RhSimR_9ATvVgl0vwkM5JMNeUF9sEk78pp-DoYEFEhZ1XIVhhjYo_-zxy6vPRyHd5_hC5wHmmw</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Jin, Xue-Bo</creator><creator>Zheng, Wei-Zhen</creator><creator>Kong, Jian-Lei</creator><creator>Wang, Xiao-Yi</creator><creator>Bai, Yu-Ting</creator><creator>Su, Ting-Li</creator><creator>Lin, Seng</creator><general>Mdpi</general><general>MDPI AG</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2230-0077</orcidid><orcidid>https://orcid.org/0000-0001-8047-1010</orcidid><orcidid>https://orcid.org/0000-0002-0074-3467</orcidid></search><sort><creationdate>20210301</creationdate><title>Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization</title><author>Jin, Xue-Bo ; Zheng, Wei-Zhen ; Kong, Jian-Lei ; Wang, Xiao-Yi ; Bai, Yu-Ting ; Su, Ting-Li ; Lin, Seng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-7f4228371d1fa66223805d0efd379108f6f9c0aa931d2cfdffd5aa9cf73feb163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian optimization</topic><topic>deep-learning encoder-decoder framework</topic><topic>electric power load prediction</topic><topic>Energy & Fuels</topic><topic>gated recurrent neural units</topic><topic>Science & Technology</topic><topic>Technology</topic><topic>temporal attention</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Xue-Bo</creatorcontrib><creatorcontrib>Zheng, Wei-Zhen</creatorcontrib><creatorcontrib>Kong, Jian-Lei</creatorcontrib><creatorcontrib>Wang, Xiao-Yi</creatorcontrib><creatorcontrib>Bai, Yu-Ting</creatorcontrib><creatorcontrib>Su, Ting-Li</creatorcontrib><creatorcontrib>Lin, Seng</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Xue-Bo</au><au>Zheng, Wei-Zhen</au><au>Kong, Jian-Lei</au><au>Wang, Xiao-Yi</au><au>Bai, Yu-Ting</au><au>Su, Ting-Li</au><au>Lin, Seng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization</atitle><jtitle>Energies (Basel)</jtitle><stitle>ENERGIES</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>14</volume><issue>6</issue><spage>1596</spage><pages>1596-</pages><artnum>1596</artnum><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Short-term electrical load forecasting plays an important role in the safety, stability, and sustainability of the power production and scheduling process. An accurate prediction of power load can provide a reliable decision for power system management. To solve the limitation of the existing load forecasting methods in dealing with time-series data, causing the poor stability and non-ideal forecasting accuracy, this paper proposed an attention-based encoder-decoder network with Bayesian optimization to do the accurate short-term power load forecasting. Proposed model is based on an encoder-decoder architecture with a gated recurrent units (GRU) recurrent neural network with high robustness on time-series data modeling. The temporal attention layer focuses on the key features of input data that play a vital role in promoting the prediction accuracy for load forecasting. Finally, the Bayesian optimization method is used to confirm the model's hyperparameters to achieve optimal predictions. The verification experiments of 24 h load forecasting with real power load data from American Electric Power (AEP) show that the proposed model outperforms other models in terms of prediction accuracy and algorithm stability, providing an effective approach for migrating time-serial power load prediction by deep-learning technology.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/en14061596</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2230-0077</orcidid><orcidid>https://orcid.org/0000-0001-8047-1010</orcidid><orcidid>https://orcid.org/0000-0002-0074-3467</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2021-03, Vol.14 (6), p.1596, Article 1596 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_webofscience_primary_000634425400001CitationCount |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Bayesian optimization deep-learning encoder-decoder framework electric power load prediction Energy & Fuels gated recurrent neural units Science & Technology Technology temporal attention |
title | Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T19%3A01%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-Learning%20Forecasting%20Method%20for%20Electric%20Power%20Load%20via%20Attention-Based%20Encoder-Decoder%20with%20Bayesian%20Optimization&rft.jtitle=Energies%20(Basel)&rft.au=Jin,%20Xue-Bo&rft.date=2021-03-01&rft.volume=14&rft.issue=6&rft.spage=1596&rft.pages=1596-&rft.artnum=1596&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en14061596&rft_dat=%3Cwebofscience_cross%3E000634425400001%3C/webofscience_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_673e905ebd144313b6744a0bbcced750&rfr_iscdi=true |