3-Hydroxypropane-1,2-Diyl Dipalmitoleate-A Natural Compound with Dual Roles (CB1 Agonist/FAAH1 Blocker) in Inhibiting Ovarian Cancer Cell Line
Though it was once known that upregulated Cannabinoid Receptor (CB1) and downregulated Fatty Acid Amide Hydrolase (FAAH1) are associated with tumour aggressiveness and metastasis, it is now clear that upregulated CB1 levels more than a certain point cause accumulation of ceramide and directs cells t...
Gespeichert in:
Veröffentlicht in: | Pharmaceuticals (Basel, Switzerland) Switzerland), 2021-03, Vol.14 (3), p.255, Article 255 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Though it was once known that upregulated Cannabinoid Receptor (CB1) and downregulated Fatty Acid Amide Hydrolase (FAAH1) are associated with tumour aggressiveness and metastasis, it is now clear that upregulated CB1 levels more than a certain point cause accumulation of ceramide and directs cells to apoptosis. Hence, CB1 analogues/FAAH1 blockers are explored widely as anticancer drugs. There are reports on CB1-agonists and FAAH1-blockers separately, however, dual activities along with ovarian cancer-specific links are not established for any natural compound. With this setting, we describe for the first time the isolation of 3-hydroxypropane-1,2-diyl dipalmitoleate (564.48 Da) from a marine snail, Conus inscriptus, which binds to both CB1 and FAAH1 (glide energies: -70.61 and -30.52 kcal/mol, respectively). MD simulations indicate stable compound-target interaction for a minimum of 50 nanoseconds with relative invariabilities in R-g. The compound inhibited ovarian cancer cell line, PA1 at 1.7 mu M. Structural and chemical interpretation of the compound (C2) was done using FT-IR, GC-MS, ESI-MS, H-1 and C-13-NMR (1 and 2D). Furthermore, a probable route for gram-scale synthesis of C2 is hinted herein. With the available preliminary data, molecular mechanisms involving dual roles for this potent molecule must be elucidated to understand the possibilities of usage as an anticancer drug. |
---|---|
ISSN: | 1424-8247 1424-8247 |
DOI: | 10.3390/ph14030255 |