A Note on the Likelihood Ratio Test in High-Dimensional Exploratory Factor Analysis
The likelihood ratio test is widely used in exploratory factor analysis to assess the model fit and determine the number of latent factors. Despite its popularity and clear statistical rationale, researchers have found that when the dimension of the response data is large compared to the sample size...
Gespeichert in:
Veröffentlicht in: | Psychometrika 2021-06, Vol.86 (2), p.442-463 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 463 |
---|---|
container_issue | 2 |
container_start_page | 442 |
container_title | Psychometrika |
container_volume | 86 |
creator | He, Yinqiu Wang, Zi Xu, Gongjun |
description | The likelihood ratio test is widely used in exploratory factor analysis to assess the model fit and determine the number of latent factors. Despite its popularity and clear statistical rationale, researchers have found that when the dimension of the response data is large compared to the sample size, the classical Chi-square approximation of the likelihood ratio test statistic often fails. Theoretically, it has been an open problem when such a phenomenon happens as the dimension of data increases; practically, the effect of high dimensionality is less examined in exploratory factor analysis, and there lacks a clear statistical guideline on the validity of the conventional Chi-square approximation. To address this problem, we investigate the failure of the Chi-square approximation of the likelihood ratio test in high-dimensional exploratory factor analysis and derive the
necessary and sufficient
condition to ensure the validity of the Chi-square approximation. The results yield simple quantitative guidelines to check in practice and would also provide useful statistical insights into the practice of exploratory factor analysis. |
doi_str_mv | 10.1007/s11336-021-09755-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000633296100001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555233680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-b6f3636207376d14c5534b43f0e3d25c426bd8f74b5847a39c24099faf345d923</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi1ERbeFF-CALHFBqlLGHttxjqttS5FWIEE5W07idF2y8WInovv29ZJSJA6I08jW949mviHkNYNzBlC-T4whqgI4K6AqpSzEM7JgWkF-anhOFgCIBTKOx-QkpTsAqJjWL8gxYlkCMr0gX5f0UxgdDQMdN46u_XfX-00ILf1iRx_ojUsj9QO99reb4sJv3ZB8GGxPL-93fYh2DHFPr2yTK13m_33y6SU56myf3KvHekq-XV3erK6L9ecPH1fLddFgKceiVh0qVBxKLFXLRCMlilpgBw5bLhvBVd3qrhS11KK0WDVcQFV1tkMh24rjKXk3993F8GPKg5qtT43rezu4MCXDJSieF4Uqo2__Qu_CFPO8B0pKnj1qyBSfqSaGlKLrzC76rY17w8AclJtZucnKzS_lRuTQm8fWU7117VPkt-MM6Bn46erQpca7oXFPWD6KQuSVyv0B2MqPB-_DKkzDmKNn_x_NNM50ysRw6-KfJf8x_wM1ZaoK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555233680</pqid></control><display><type>article</type><title>A Note on the Likelihood Ratio Test in High-Dimensional Exploratory Factor Analysis</title><source>SpringerNature Journals</source><source>Education Source</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>He, Yinqiu ; Wang, Zi ; Xu, Gongjun</creator><creatorcontrib>He, Yinqiu ; Wang, Zi ; Xu, Gongjun</creatorcontrib><description>The likelihood ratio test is widely used in exploratory factor analysis to assess the model fit and determine the number of latent factors. Despite its popularity and clear statistical rationale, researchers have found that when the dimension of the response data is large compared to the sample size, the classical Chi-square approximation of the likelihood ratio test statistic often fails. Theoretically, it has been an open problem when such a phenomenon happens as the dimension of data increases; practically, the effect of high dimensionality is less examined in exploratory factor analysis, and there lacks a clear statistical guideline on the validity of the conventional Chi-square approximation. To address this problem, we investigate the failure of the Chi-square approximation of the likelihood ratio test in high-dimensional exploratory factor analysis and derive the
necessary and sufficient
condition to ensure the validity of the Chi-square approximation. The results yield simple quantitative guidelines to check in practice and would also provide useful statistical insights into the practice of exploratory factor analysis.</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/s11336-021-09755-4</identifier><identifier>PMID: 33770318</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Assessment ; Behavioral Science and Psychology ; Chi-square test ; Discriminant analysis ; Factor analysis ; Humanities ; Law ; Mathematical Methods In Social Sciences ; Mathematics ; Mathematics, Interdisciplinary Applications ; Physical Sciences ; Psychology ; Psychology, Mathematical ; Psychometrics ; Science & Technology ; Social Sciences ; Social Sciences, Mathematical Methods ; Statistical Theory and Methods ; Statistics ; Statistics for Social Sciences ; Testing and Evaluation ; Theory and Methods ; Theory and Methods (T&M) ; Validity</subject><ispartof>Psychometrika, 2021-06, Vol.86 (2), p.442-463</ispartof><rights>The Psychometric Society 2021</rights><rights>The Psychometric Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000633296100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c375t-b6f3636207376d14c5534b43f0e3d25c426bd8f74b5847a39c24099faf345d923</citedby><cites>FETCH-LOGICAL-c375t-b6f3636207376d14c5534b43f0e3d25c426bd8f74b5847a39c24099faf345d923</cites><orcidid>0000-0003-4023-5413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11336-021-09755-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11336-021-09755-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,39262,39263,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33770318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Yinqiu</creatorcontrib><creatorcontrib>Wang, Zi</creatorcontrib><creatorcontrib>Xu, Gongjun</creatorcontrib><title>A Note on the Likelihood Ratio Test in High-Dimensional Exploratory Factor Analysis</title><title>Psychometrika</title><addtitle>Psychometrika</addtitle><addtitle>PSYCHOMETRIKA</addtitle><addtitle>Psychometrika</addtitle><description>The likelihood ratio test is widely used in exploratory factor analysis to assess the model fit and determine the number of latent factors. Despite its popularity and clear statistical rationale, researchers have found that when the dimension of the response data is large compared to the sample size, the classical Chi-square approximation of the likelihood ratio test statistic often fails. Theoretically, it has been an open problem when such a phenomenon happens as the dimension of data increases; practically, the effect of high dimensionality is less examined in exploratory factor analysis, and there lacks a clear statistical guideline on the validity of the conventional Chi-square approximation. To address this problem, we investigate the failure of the Chi-square approximation of the likelihood ratio test in high-dimensional exploratory factor analysis and derive the
necessary and sufficient
condition to ensure the validity of the Chi-square approximation. The results yield simple quantitative guidelines to check in practice and would also provide useful statistical insights into the practice of exploratory factor analysis.</description><subject>Approximation</subject><subject>Assessment</subject><subject>Behavioral Science and Psychology</subject><subject>Chi-square test</subject><subject>Discriminant analysis</subject><subject>Factor analysis</subject><subject>Humanities</subject><subject>Law</subject><subject>Mathematical Methods In Social Sciences</subject><subject>Mathematics</subject><subject>Mathematics, Interdisciplinary Applications</subject><subject>Physical Sciences</subject><subject>Psychology</subject><subject>Psychology, Mathematical</subject><subject>Psychometrics</subject><subject>Science & Technology</subject><subject>Social Sciences</subject><subject>Social Sciences, Mathematical Methods</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Social Sciences</subject><subject>Testing and Evaluation</subject><subject>Theory and Methods</subject><subject>Theory and Methods (T&M)</subject><subject>Validity</subject><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>GIZIO</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkcFu1DAQhi1ERbeFF-CALHFBqlLGHttxjqttS5FWIEE5W07idF2y8WInovv29ZJSJA6I08jW949mviHkNYNzBlC-T4whqgI4K6AqpSzEM7JgWkF-anhOFgCIBTKOx-QkpTsAqJjWL8gxYlkCMr0gX5f0UxgdDQMdN46u_XfX-00ILf1iRx_ojUsj9QO99reb4sJv3ZB8GGxPL-93fYh2DHFPr2yTK13m_33y6SU56myf3KvHekq-XV3erK6L9ecPH1fLddFgKceiVh0qVBxKLFXLRCMlilpgBw5bLhvBVd3qrhS11KK0WDVcQFV1tkMh24rjKXk3993F8GPKg5qtT43rezu4MCXDJSieF4Uqo2__Qu_CFPO8B0pKnj1qyBSfqSaGlKLrzC76rY17w8AclJtZucnKzS_lRuTQm8fWU7117VPkt-MM6Bn46erQpca7oXFPWD6KQuSVyv0B2MqPB-_DKkzDmKNn_x_NNM50ysRw6-KfJf8x_wM1ZaoK</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>He, Yinqiu</creator><creator>Wang, Zi</creator><creator>Xu, Gongjun</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>17B</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>GIZIO</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7TK</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88B</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0P</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4023-5413</orcidid></search><sort><creationdate>20210601</creationdate><title>A Note on the Likelihood Ratio Test in High-Dimensional Exploratory Factor Analysis</title><author>He, Yinqiu ; Wang, Zi ; Xu, Gongjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-b6f3636207376d14c5534b43f0e3d25c426bd8f74b5847a39c24099faf345d923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Assessment</topic><topic>Behavioral Science and Psychology</topic><topic>Chi-square test</topic><topic>Discriminant analysis</topic><topic>Factor analysis</topic><topic>Humanities</topic><topic>Law</topic><topic>Mathematical Methods In Social Sciences</topic><topic>Mathematics</topic><topic>Mathematics, Interdisciplinary Applications</topic><topic>Physical Sciences</topic><topic>Psychology</topic><topic>Psychology, Mathematical</topic><topic>Psychometrics</topic><topic>Science & Technology</topic><topic>Social Sciences</topic><topic>Social Sciences, Mathematical Methods</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Social Sciences</topic><topic>Testing and Evaluation</topic><topic>Theory and Methods</topic><topic>Theory and Methods (T&M)</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yinqiu</creatorcontrib><creatorcontrib>Wang, Zi</creatorcontrib><creatorcontrib>Xu, Gongjun</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI & AHCI)</collection><collection>Web of Science - Social Sciences Citation Index – 2021</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Education Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Yinqiu</au><au>Wang, Zi</au><au>Xu, Gongjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Note on the Likelihood Ratio Test in High-Dimensional Exploratory Factor Analysis</atitle><jtitle>Psychometrika</jtitle><stitle>Psychometrika</stitle><stitle>PSYCHOMETRIKA</stitle><addtitle>Psychometrika</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>86</volume><issue>2</issue><spage>442</spage><epage>463</epage><pages>442-463</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><abstract>The likelihood ratio test is widely used in exploratory factor analysis to assess the model fit and determine the number of latent factors. Despite its popularity and clear statistical rationale, researchers have found that when the dimension of the response data is large compared to the sample size, the classical Chi-square approximation of the likelihood ratio test statistic often fails. Theoretically, it has been an open problem when such a phenomenon happens as the dimension of data increases; practically, the effect of high dimensionality is less examined in exploratory factor analysis, and there lacks a clear statistical guideline on the validity of the conventional Chi-square approximation. To address this problem, we investigate the failure of the Chi-square approximation of the likelihood ratio test in high-dimensional exploratory factor analysis and derive the
necessary and sufficient
condition to ensure the validity of the Chi-square approximation. The results yield simple quantitative guidelines to check in practice and would also provide useful statistical insights into the practice of exploratory factor analysis.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33770318</pmid><doi>10.1007/s11336-021-09755-4</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4023-5413</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-3123 |
ispartof | Psychometrika, 2021-06, Vol.86 (2), p.442-463 |
issn | 0033-3123 1860-0980 |
language | eng |
recordid | cdi_webofscience_primary_000633296100001CitationCount |
source | SpringerNature Journals; Education Source; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Approximation Assessment Behavioral Science and Psychology Chi-square test Discriminant analysis Factor analysis Humanities Law Mathematical Methods In Social Sciences Mathematics Mathematics, Interdisciplinary Applications Physical Sciences Psychology Psychology, Mathematical Psychometrics Science & Technology Social Sciences Social Sciences, Mathematical Methods Statistical Theory and Methods Statistics Statistics for Social Sciences Testing and Evaluation Theory and Methods Theory and Methods (T&M) Validity |
title | A Note on the Likelihood Ratio Test in High-Dimensional Exploratory Factor Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Note%20on%20the%20Likelihood%20Ratio%20Test%20in%20High-Dimensional%20Exploratory%20Factor%20Analysis&rft.jtitle=Psychometrika&rft.au=He,%20Yinqiu&rft.date=2021-06-01&rft.volume=86&rft.issue=2&rft.spage=442&rft.epage=463&rft.pages=442-463&rft.issn=0033-3123&rft.eissn=1860-0980&rft_id=info:doi/10.1007/s11336-021-09755-4&rft_dat=%3Cproquest_webof%3E2555233680%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555233680&rft_id=info:pmid/33770318&rfr_iscdi=true |