A Note on the Likelihood Ratio Test in High-Dimensional Exploratory Factor Analysis

The likelihood ratio test is widely used in exploratory factor analysis to assess the model fit and determine the number of latent factors. Despite its popularity and clear statistical rationale, researchers have found that when the dimension of the response data is large compared to the sample size...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychometrika 2021-06, Vol.86 (2), p.442-463
Hauptverfasser: He, Yinqiu, Wang, Zi, Xu, Gongjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 463
container_issue 2
container_start_page 442
container_title Psychometrika
container_volume 86
creator He, Yinqiu
Wang, Zi
Xu, Gongjun
description The likelihood ratio test is widely used in exploratory factor analysis to assess the model fit and determine the number of latent factors. Despite its popularity and clear statistical rationale, researchers have found that when the dimension of the response data is large compared to the sample size, the classical Chi-square approximation of the likelihood ratio test statistic often fails. Theoretically, it has been an open problem when such a phenomenon happens as the dimension of data increases; practically, the effect of high dimensionality is less examined in exploratory factor analysis, and there lacks a clear statistical guideline on the validity of the conventional Chi-square approximation. To address this problem, we investigate the failure of the Chi-square approximation of the likelihood ratio test in high-dimensional exploratory factor analysis and derive the necessary and sufficient condition to ensure the validity of the Chi-square approximation. The results yield simple quantitative guidelines to check in practice and would also provide useful statistical insights into the practice of exploratory factor analysis.
doi_str_mv 10.1007/s11336-021-09755-4
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000633296100001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555233680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-b6f3636207376d14c5534b43f0e3d25c426bd8f74b5847a39c24099faf345d923</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi1ERbeFF-CALHFBqlLGHttxjqttS5FWIEE5W07idF2y8WInovv29ZJSJA6I08jW949mviHkNYNzBlC-T4whqgI4K6AqpSzEM7JgWkF-anhOFgCIBTKOx-QkpTsAqJjWL8gxYlkCMr0gX5f0UxgdDQMdN46u_XfX-00ILf1iRx_ojUsj9QO99reb4sJv3ZB8GGxPL-93fYh2DHFPr2yTK13m_33y6SU56myf3KvHekq-XV3erK6L9ecPH1fLddFgKceiVh0qVBxKLFXLRCMlilpgBw5bLhvBVd3qrhS11KK0WDVcQFV1tkMh24rjKXk3993F8GPKg5qtT43rezu4MCXDJSieF4Uqo2__Qu_CFPO8B0pKnj1qyBSfqSaGlKLrzC76rY17w8AclJtZucnKzS_lRuTQm8fWU7117VPkt-MM6Bn46erQpca7oXFPWD6KQuSVyv0B2MqPB-_DKkzDmKNn_x_NNM50ysRw6-KfJf8x_wM1ZaoK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555233680</pqid></control><display><type>article</type><title>A Note on the Likelihood Ratio Test in High-Dimensional Exploratory Factor Analysis</title><source>SpringerNature Journals</source><source>Education Source</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Web of Science - Social Sciences Citation Index – 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>He, Yinqiu ; Wang, Zi ; Xu, Gongjun</creator><creatorcontrib>He, Yinqiu ; Wang, Zi ; Xu, Gongjun</creatorcontrib><description>The likelihood ratio test is widely used in exploratory factor analysis to assess the model fit and determine the number of latent factors. Despite its popularity and clear statistical rationale, researchers have found that when the dimension of the response data is large compared to the sample size, the classical Chi-square approximation of the likelihood ratio test statistic often fails. Theoretically, it has been an open problem when such a phenomenon happens as the dimension of data increases; practically, the effect of high dimensionality is less examined in exploratory factor analysis, and there lacks a clear statistical guideline on the validity of the conventional Chi-square approximation. To address this problem, we investigate the failure of the Chi-square approximation of the likelihood ratio test in high-dimensional exploratory factor analysis and derive the necessary and sufficient condition to ensure the validity of the Chi-square approximation. The results yield simple quantitative guidelines to check in practice and would also provide useful statistical insights into the practice of exploratory factor analysis.</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/s11336-021-09755-4</identifier><identifier>PMID: 33770318</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Assessment ; Behavioral Science and Psychology ; Chi-square test ; Discriminant analysis ; Factor analysis ; Humanities ; Law ; Mathematical Methods In Social Sciences ; Mathematics ; Mathematics, Interdisciplinary Applications ; Physical Sciences ; Psychology ; Psychology, Mathematical ; Psychometrics ; Science &amp; Technology ; Social Sciences ; Social Sciences, Mathematical Methods ; Statistical Theory and Methods ; Statistics ; Statistics for Social Sciences ; Testing and Evaluation ; Theory and Methods ; Theory and Methods (T&amp;M) ; Validity</subject><ispartof>Psychometrika, 2021-06, Vol.86 (2), p.442-463</ispartof><rights>The Psychometric Society 2021</rights><rights>The Psychometric Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000633296100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c375t-b6f3636207376d14c5534b43f0e3d25c426bd8f74b5847a39c24099faf345d923</citedby><cites>FETCH-LOGICAL-c375t-b6f3636207376d14c5534b43f0e3d25c426bd8f74b5847a39c24099faf345d923</cites><orcidid>0000-0003-4023-5413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11336-021-09755-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11336-021-09755-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,39262,39263,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33770318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Yinqiu</creatorcontrib><creatorcontrib>Wang, Zi</creatorcontrib><creatorcontrib>Xu, Gongjun</creatorcontrib><title>A Note on the Likelihood Ratio Test in High-Dimensional Exploratory Factor Analysis</title><title>Psychometrika</title><addtitle>Psychometrika</addtitle><addtitle>PSYCHOMETRIKA</addtitle><addtitle>Psychometrika</addtitle><description>The likelihood ratio test is widely used in exploratory factor analysis to assess the model fit and determine the number of latent factors. Despite its popularity and clear statistical rationale, researchers have found that when the dimension of the response data is large compared to the sample size, the classical Chi-square approximation of the likelihood ratio test statistic often fails. Theoretically, it has been an open problem when such a phenomenon happens as the dimension of data increases; practically, the effect of high dimensionality is less examined in exploratory factor analysis, and there lacks a clear statistical guideline on the validity of the conventional Chi-square approximation. To address this problem, we investigate the failure of the Chi-square approximation of the likelihood ratio test in high-dimensional exploratory factor analysis and derive the necessary and sufficient condition to ensure the validity of the Chi-square approximation. The results yield simple quantitative guidelines to check in practice and would also provide useful statistical insights into the practice of exploratory factor analysis.</description><subject>Approximation</subject><subject>Assessment</subject><subject>Behavioral Science and Psychology</subject><subject>Chi-square test</subject><subject>Discriminant analysis</subject><subject>Factor analysis</subject><subject>Humanities</subject><subject>Law</subject><subject>Mathematical Methods In Social Sciences</subject><subject>Mathematics</subject><subject>Mathematics, Interdisciplinary Applications</subject><subject>Physical Sciences</subject><subject>Psychology</subject><subject>Psychology, Mathematical</subject><subject>Psychometrics</subject><subject>Science &amp; Technology</subject><subject>Social Sciences</subject><subject>Social Sciences, Mathematical Methods</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Social Sciences</subject><subject>Testing and Evaluation</subject><subject>Theory and Methods</subject><subject>Theory and Methods (T&amp;M)</subject><subject>Validity</subject><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>GIZIO</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkcFu1DAQhi1ERbeFF-CALHFBqlLGHttxjqttS5FWIEE5W07idF2y8WInovv29ZJSJA6I08jW949mviHkNYNzBlC-T4whqgI4K6AqpSzEM7JgWkF-anhOFgCIBTKOx-QkpTsAqJjWL8gxYlkCMr0gX5f0UxgdDQMdN46u_XfX-00ILf1iRx_ojUsj9QO99reb4sJv3ZB8GGxPL-93fYh2DHFPr2yTK13m_33y6SU56myf3KvHekq-XV3erK6L9ecPH1fLddFgKceiVh0qVBxKLFXLRCMlilpgBw5bLhvBVd3qrhS11KK0WDVcQFV1tkMh24rjKXk3993F8GPKg5qtT43rezu4MCXDJSieF4Uqo2__Qu_CFPO8B0pKnj1qyBSfqSaGlKLrzC76rY17w8AclJtZucnKzS_lRuTQm8fWU7117VPkt-MM6Bn46erQpca7oXFPWD6KQuSVyv0B2MqPB-_DKkzDmKNn_x_NNM50ysRw6-KfJf8x_wM1ZaoK</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>He, Yinqiu</creator><creator>Wang, Zi</creator><creator>Xu, Gongjun</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>17B</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>GIZIO</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7TK</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88B</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0P</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4023-5413</orcidid></search><sort><creationdate>20210601</creationdate><title>A Note on the Likelihood Ratio Test in High-Dimensional Exploratory Factor Analysis</title><author>He, Yinqiu ; Wang, Zi ; Xu, Gongjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-b6f3636207376d14c5534b43f0e3d25c426bd8f74b5847a39c24099faf345d923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Assessment</topic><topic>Behavioral Science and Psychology</topic><topic>Chi-square test</topic><topic>Discriminant analysis</topic><topic>Factor analysis</topic><topic>Humanities</topic><topic>Law</topic><topic>Mathematical Methods In Social Sciences</topic><topic>Mathematics</topic><topic>Mathematics, Interdisciplinary Applications</topic><topic>Physical Sciences</topic><topic>Psychology</topic><topic>Psychology, Mathematical</topic><topic>Psychometrics</topic><topic>Science &amp; Technology</topic><topic>Social Sciences</topic><topic>Social Sciences, Mathematical Methods</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Social Sciences</topic><topic>Testing and Evaluation</topic><topic>Theory and Methods</topic><topic>Theory and Methods (T&amp;M)</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yinqiu</creatorcontrib><creatorcontrib>Wang, Zi</creatorcontrib><creatorcontrib>Xu, Gongjun</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI &amp; AHCI)</collection><collection>Web of Science - Social Sciences Citation Index – 2021</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Education Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Yinqiu</au><au>Wang, Zi</au><au>Xu, Gongjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Note on the Likelihood Ratio Test in High-Dimensional Exploratory Factor Analysis</atitle><jtitle>Psychometrika</jtitle><stitle>Psychometrika</stitle><stitle>PSYCHOMETRIKA</stitle><addtitle>Psychometrika</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>86</volume><issue>2</issue><spage>442</spage><epage>463</epage><pages>442-463</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><abstract>The likelihood ratio test is widely used in exploratory factor analysis to assess the model fit and determine the number of latent factors. Despite its popularity and clear statistical rationale, researchers have found that when the dimension of the response data is large compared to the sample size, the classical Chi-square approximation of the likelihood ratio test statistic often fails. Theoretically, it has been an open problem when such a phenomenon happens as the dimension of data increases; practically, the effect of high dimensionality is less examined in exploratory factor analysis, and there lacks a clear statistical guideline on the validity of the conventional Chi-square approximation. To address this problem, we investigate the failure of the Chi-square approximation of the likelihood ratio test in high-dimensional exploratory factor analysis and derive the necessary and sufficient condition to ensure the validity of the Chi-square approximation. The results yield simple quantitative guidelines to check in practice and would also provide useful statistical insights into the practice of exploratory factor analysis.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33770318</pmid><doi>10.1007/s11336-021-09755-4</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4023-5413</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0033-3123
ispartof Psychometrika, 2021-06, Vol.86 (2), p.442-463
issn 0033-3123
1860-0980
language eng
recordid cdi_webofscience_primary_000633296100001CitationCount
source SpringerNature Journals; Education Source; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Approximation
Assessment
Behavioral Science and Psychology
Chi-square test
Discriminant analysis
Factor analysis
Humanities
Law
Mathematical Methods In Social Sciences
Mathematics
Mathematics, Interdisciplinary Applications
Physical Sciences
Psychology
Psychology, Mathematical
Psychometrics
Science & Technology
Social Sciences
Social Sciences, Mathematical Methods
Statistical Theory and Methods
Statistics
Statistics for Social Sciences
Testing and Evaluation
Theory and Methods
Theory and Methods (T&M)
Validity
title A Note on the Likelihood Ratio Test in High-Dimensional Exploratory Factor Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Note%20on%20the%20Likelihood%20Ratio%20Test%20in%20High-Dimensional%20Exploratory%20Factor%20Analysis&rft.jtitle=Psychometrika&rft.au=He,%20Yinqiu&rft.date=2021-06-01&rft.volume=86&rft.issue=2&rft.spage=442&rft.epage=463&rft.pages=442-463&rft.issn=0033-3123&rft.eissn=1860-0980&rft_id=info:doi/10.1007/s11336-021-09755-4&rft_dat=%3Cproquest_webof%3E2555233680%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555233680&rft_id=info:pmid/33770318&rfr_iscdi=true