Investigating microwave loss of SiGe using superconducting transmon qubits

Silicon-germanium (SiGe) is a material that possesses a multitude of applications ranging from transistors to electro-optical modulators and quantum dots. The diverse properties of SiGe also make it attractive to implementations involving superconducting quantum computing. Here, we demonstrate the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-03, Vol.118 (12), Article 124001
Hauptverfasser: Sandberg, Martin, Adiga, Vivekananda P., Brink, Markus, Kurter, Cihan, Murray, Conal, Hopstaken, Marinus, Bruley, John, Orcutt, Jason S., Paik, Hanhee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Applied physics letters
container_volume 118
creator Sandberg, Martin
Adiga, Vivekananda P.
Brink, Markus
Kurter, Cihan
Murray, Conal
Hopstaken, Marinus
Bruley, John
Orcutt, Jason S.
Paik, Hanhee
description Silicon-germanium (SiGe) is a material that possesses a multitude of applications ranging from transistors to electro-optical modulators and quantum dots. The diverse properties of SiGe also make it attractive to implementations involving superconducting quantum computing. Here, we demonstrate the fabrication of transmon quantum bits on SiGe layers and investigate the microwave loss properties of SiGe at cryogenic temperatures and single photon microwave powers. We find relaxation times of up to 100 μs, corresponding to a quality factor Q above 4 M for large pad transmons. The high Q values obtained indicate that the SiGe/Si heterostructure is compatible with state-of-the-art performance of superconducting quantum circuits.
doi_str_mv 10.1063/5.0038087
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000632737200001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503507777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-f8434a483204660ff7a88dca69a447ed4a20fdc922d70ab6bc7d76dcfd446d9e3</originalsourceid><addsrcrecordid>eNqNkF9PwyAUxYnRxDl98Bs08UlNJwUK9NE0OmeW-KA-N5Q_S5cNOmi3-O1ldtEnjU-Xe_gduPcAcJnBSQYpvssnEGIOOTsCowwyluIs48dgBKOc0iLPTsFZCMvY5gjjEXie2a0OXbMQXWMXybqR3u3EVicrF0LiTPLaTHXSh_1l6FvtpbOql19w54UNa2eTTV83XTgHJ0asgr441DF4f3x4K5_S-ct0Vt7PU4kp6lLDCSaCcIwgoRQawwTnSgpaCEKYVkQgaJQsEFIMiprWkilGlTSKEKoKjcfgani39W7Tx-Grpeu9jV9WKIc4j1szFqnrgYoLheC1qVrfrIX_qDJY7aOq8uoQVWRvB3ana2eCbLSV-puPWVGMGGYonmAWaf5_umy6mKyzpettF603gzW6Bv3PqX6Ft87_gFWrDP4EKXKYvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503507777</pqid></control><display><type>article</type><title>Investigating microwave loss of SiGe using superconducting transmon qubits</title><source>AIP Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Sandberg, Martin ; Adiga, Vivekananda P. ; Brink, Markus ; Kurter, Cihan ; Murray, Conal ; Hopstaken, Marinus ; Bruley, John ; Orcutt, Jason S. ; Paik, Hanhee</creator><creatorcontrib>Sandberg, Martin ; Adiga, Vivekananda P. ; Brink, Markus ; Kurter, Cihan ; Murray, Conal ; Hopstaken, Marinus ; Bruley, John ; Orcutt, Jason S. ; Paik, Hanhee</creatorcontrib><description>Silicon-germanium (SiGe) is a material that possesses a multitude of applications ranging from transistors to electro-optical modulators and quantum dots. The diverse properties of SiGe also make it attractive to implementations involving superconducting quantum computing. Here, we demonstrate the fabrication of transmon quantum bits on SiGe layers and investigate the microwave loss properties of SiGe at cryogenic temperatures and single photon microwave powers. We find relaxation times of up to 100 μs, corresponding to a quality factor Q above 4 M for large pad transmons. The high Q values obtained indicate that the SiGe/Si heterostructure is compatible with state-of-the-art performance of superconducting quantum circuits.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0038087</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>MELVILLE: Amer Inst Physics</publisher><subject>Applied physics ; Cryogenic temperature ; Germanium ; Heterostructures ; Modulators ; Optical properties ; Physical Sciences ; Physics ; Physics, Applied ; Q factors ; Quantum computing ; Quantum dots ; Qubits (quantum computing) ; Science &amp; Technology ; Silicon germanides ; Superconductivity ; Transistors</subject><ispartof>Applied physics letters, 2021-03, Vol.118 (12), Article 124001</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000632737200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c362t-f8434a483204660ff7a88dca69a447ed4a20fdc922d70ab6bc7d76dcfd446d9e3</citedby><cites>FETCH-LOGICAL-c362t-f8434a483204660ff7a88dca69a447ed4a20fdc922d70ab6bc7d76dcfd446d9e3</cites><orcidid>0000-0002-5341-0180 ; 0000-0001-7131-1250 ; 0000-0001-9901-4290 ; 0000-0002-6375-4737 ; 0000-0001-5979-6830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0038087$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27929,27930,39263,76389</link.rule.ids></links><search><creatorcontrib>Sandberg, Martin</creatorcontrib><creatorcontrib>Adiga, Vivekananda P.</creatorcontrib><creatorcontrib>Brink, Markus</creatorcontrib><creatorcontrib>Kurter, Cihan</creatorcontrib><creatorcontrib>Murray, Conal</creatorcontrib><creatorcontrib>Hopstaken, Marinus</creatorcontrib><creatorcontrib>Bruley, John</creatorcontrib><creatorcontrib>Orcutt, Jason S.</creatorcontrib><creatorcontrib>Paik, Hanhee</creatorcontrib><title>Investigating microwave loss of SiGe using superconducting transmon qubits</title><title>Applied physics letters</title><addtitle>APPL PHYS LETT</addtitle><description>Silicon-germanium (SiGe) is a material that possesses a multitude of applications ranging from transistors to electro-optical modulators and quantum dots. The diverse properties of SiGe also make it attractive to implementations involving superconducting quantum computing. Here, we demonstrate the fabrication of transmon quantum bits on SiGe layers and investigate the microwave loss properties of SiGe at cryogenic temperatures and single photon microwave powers. We find relaxation times of up to 100 μs, corresponding to a quality factor Q above 4 M for large pad transmons. The high Q values obtained indicate that the SiGe/Si heterostructure is compatible with state-of-the-art performance of superconducting quantum circuits.</description><subject>Applied physics</subject><subject>Cryogenic temperature</subject><subject>Germanium</subject><subject>Heterostructures</subject><subject>Modulators</subject><subject>Optical properties</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Q factors</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>Qubits (quantum computing)</subject><subject>Science &amp; Technology</subject><subject>Silicon germanides</subject><subject>Superconductivity</subject><subject>Transistors</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkF9PwyAUxYnRxDl98Bs08UlNJwUK9NE0OmeW-KA-N5Q_S5cNOmi3-O1ldtEnjU-Xe_gduPcAcJnBSQYpvssnEGIOOTsCowwyluIs48dgBKOc0iLPTsFZCMvY5gjjEXie2a0OXbMQXWMXybqR3u3EVicrF0LiTPLaTHXSh_1l6FvtpbOql19w54UNa2eTTV83XTgHJ0asgr441DF4f3x4K5_S-ct0Vt7PU4kp6lLDCSaCcIwgoRQawwTnSgpaCEKYVkQgaJQsEFIMiprWkilGlTSKEKoKjcfgani39W7Tx-Grpeu9jV9WKIc4j1szFqnrgYoLheC1qVrfrIX_qDJY7aOq8uoQVWRvB3ana2eCbLSV-puPWVGMGGYonmAWaf5_umy6mKyzpettF603gzW6Bv3PqX6Ft87_gFWrDP4EKXKYvg</recordid><startdate>20210322</startdate><enddate>20210322</enddate><creator>Sandberg, Martin</creator><creator>Adiga, Vivekananda P.</creator><creator>Brink, Markus</creator><creator>Kurter, Cihan</creator><creator>Murray, Conal</creator><creator>Hopstaken, Marinus</creator><creator>Bruley, John</creator><creator>Orcutt, Jason S.</creator><creator>Paik, Hanhee</creator><general>Amer Inst Physics</general><general>American Institute of Physics</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5341-0180</orcidid><orcidid>https://orcid.org/0000-0001-7131-1250</orcidid><orcidid>https://orcid.org/0000-0001-9901-4290</orcidid><orcidid>https://orcid.org/0000-0002-6375-4737</orcidid><orcidid>https://orcid.org/0000-0001-5979-6830</orcidid></search><sort><creationdate>20210322</creationdate><title>Investigating microwave loss of SiGe using superconducting transmon qubits</title><author>Sandberg, Martin ; Adiga, Vivekananda P. ; Brink, Markus ; Kurter, Cihan ; Murray, Conal ; Hopstaken, Marinus ; Bruley, John ; Orcutt, Jason S. ; Paik, Hanhee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-f8434a483204660ff7a88dca69a447ed4a20fdc922d70ab6bc7d76dcfd446d9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Cryogenic temperature</topic><topic>Germanium</topic><topic>Heterostructures</topic><topic>Modulators</topic><topic>Optical properties</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Q factors</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>Qubits (quantum computing)</topic><topic>Science &amp; Technology</topic><topic>Silicon germanides</topic><topic>Superconductivity</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandberg, Martin</creatorcontrib><creatorcontrib>Adiga, Vivekananda P.</creatorcontrib><creatorcontrib>Brink, Markus</creatorcontrib><creatorcontrib>Kurter, Cihan</creatorcontrib><creatorcontrib>Murray, Conal</creatorcontrib><creatorcontrib>Hopstaken, Marinus</creatorcontrib><creatorcontrib>Bruley, John</creatorcontrib><creatorcontrib>Orcutt, Jason S.</creatorcontrib><creatorcontrib>Paik, Hanhee</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandberg, Martin</au><au>Adiga, Vivekananda P.</au><au>Brink, Markus</au><au>Kurter, Cihan</au><au>Murray, Conal</au><au>Hopstaken, Marinus</au><au>Bruley, John</au><au>Orcutt, Jason S.</au><au>Paik, Hanhee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating microwave loss of SiGe using superconducting transmon qubits</atitle><jtitle>Applied physics letters</jtitle><stitle>APPL PHYS LETT</stitle><date>2021-03-22</date><risdate>2021</risdate><volume>118</volume><issue>12</issue><artnum>124001</artnum><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Silicon-germanium (SiGe) is a material that possesses a multitude of applications ranging from transistors to electro-optical modulators and quantum dots. The diverse properties of SiGe also make it attractive to implementations involving superconducting quantum computing. Here, we demonstrate the fabrication of transmon quantum bits on SiGe layers and investigate the microwave loss properties of SiGe at cryogenic temperatures and single photon microwave powers. We find relaxation times of up to 100 μs, corresponding to a quality factor Q above 4 M for large pad transmons. The high Q values obtained indicate that the SiGe/Si heterostructure is compatible with state-of-the-art performance of superconducting quantum circuits.</abstract><cop>MELVILLE</cop><pub>Amer Inst Physics</pub><doi>10.1063/5.0038087</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5341-0180</orcidid><orcidid>https://orcid.org/0000-0001-7131-1250</orcidid><orcidid>https://orcid.org/0000-0001-9901-4290</orcidid><orcidid>https://orcid.org/0000-0002-6375-4737</orcidid><orcidid>https://orcid.org/0000-0001-5979-6830</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-03, Vol.118 (12), Article 124001
issn 0003-6951
1077-3118
language eng
recordid cdi_webofscience_primary_000632737200001
source AIP Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Applied physics
Cryogenic temperature
Germanium
Heterostructures
Modulators
Optical properties
Physical Sciences
Physics
Physics, Applied
Q factors
Quantum computing
Quantum dots
Qubits (quantum computing)
Science & Technology
Silicon germanides
Superconductivity
Transistors
title Investigating microwave loss of SiGe using superconducting transmon qubits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T00%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20microwave%20loss%20of%20SiGe%20using%20superconducting%20transmon%20qubits&rft.jtitle=Applied%20physics%20letters&rft.au=Sandberg,%20Martin&rft.date=2021-03-22&rft.volume=118&rft.issue=12&rft.artnum=124001&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0038087&rft_dat=%3Cproquest_webof%3E2503507777%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503507777&rft_id=info:pmid/&rfr_iscdi=true