Investigating microwave loss of SiGe using superconducting transmon qubits
Silicon-germanium (SiGe) is a material that possesses a multitude of applications ranging from transistors to electro-optical modulators and quantum dots. The diverse properties of SiGe also make it attractive to implementations involving superconducting quantum computing. Here, we demonstrate the f...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2021-03, Vol.118 (12), Article 124001 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 118 |
creator | Sandberg, Martin Adiga, Vivekananda P. Brink, Markus Kurter, Cihan Murray, Conal Hopstaken, Marinus Bruley, John Orcutt, Jason S. Paik, Hanhee |
description | Silicon-germanium (SiGe) is a material that possesses a multitude of applications ranging from transistors to electro-optical modulators and quantum dots. The diverse properties of SiGe also make it attractive to implementations involving superconducting quantum computing. Here, we demonstrate the fabrication of transmon quantum bits on SiGe layers and investigate the microwave loss properties of SiGe at cryogenic temperatures and single photon microwave powers. We find relaxation times of up to 100 μs, corresponding to a quality factor Q above 4 M for large pad transmons. The high Q values obtained indicate that the SiGe/Si heterostructure is compatible with state-of-the-art performance of superconducting quantum circuits. |
doi_str_mv | 10.1063/5.0038087 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000632737200001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503507777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-f8434a483204660ff7a88dca69a447ed4a20fdc922d70ab6bc7d76dcfd446d9e3</originalsourceid><addsrcrecordid>eNqNkF9PwyAUxYnRxDl98Bs08UlNJwUK9NE0OmeW-KA-N5Q_S5cNOmi3-O1ldtEnjU-Xe_gduPcAcJnBSQYpvssnEGIOOTsCowwyluIs48dgBKOc0iLPTsFZCMvY5gjjEXie2a0OXbMQXWMXybqR3u3EVicrF0LiTPLaTHXSh_1l6FvtpbOql19w54UNa2eTTV83XTgHJ0asgr441DF4f3x4K5_S-ct0Vt7PU4kp6lLDCSaCcIwgoRQawwTnSgpaCEKYVkQgaJQsEFIMiprWkilGlTSKEKoKjcfgani39W7Tx-Grpeu9jV9WKIc4j1szFqnrgYoLheC1qVrfrIX_qDJY7aOq8uoQVWRvB3ana2eCbLSV-puPWVGMGGYonmAWaf5_umy6mKyzpettF603gzW6Bv3PqX6Ft87_gFWrDP4EKXKYvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503507777</pqid></control><display><type>article</type><title>Investigating microwave loss of SiGe using superconducting transmon qubits</title><source>AIP Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Sandberg, Martin ; Adiga, Vivekananda P. ; Brink, Markus ; Kurter, Cihan ; Murray, Conal ; Hopstaken, Marinus ; Bruley, John ; Orcutt, Jason S. ; Paik, Hanhee</creator><creatorcontrib>Sandberg, Martin ; Adiga, Vivekananda P. ; Brink, Markus ; Kurter, Cihan ; Murray, Conal ; Hopstaken, Marinus ; Bruley, John ; Orcutt, Jason S. ; Paik, Hanhee</creatorcontrib><description>Silicon-germanium (SiGe) is a material that possesses a multitude of applications ranging from transistors to electro-optical modulators and quantum dots. The diverse properties of SiGe also make it attractive to implementations involving superconducting quantum computing. Here, we demonstrate the fabrication of transmon quantum bits on SiGe layers and investigate the microwave loss properties of SiGe at cryogenic temperatures and single photon microwave powers. We find relaxation times of up to 100 μs, corresponding to a quality factor Q above 4 M for large pad transmons. The high Q values obtained indicate that the SiGe/Si heterostructure is compatible with state-of-the-art performance of superconducting quantum circuits.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0038087</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>MELVILLE: Amer Inst Physics</publisher><subject>Applied physics ; Cryogenic temperature ; Germanium ; Heterostructures ; Modulators ; Optical properties ; Physical Sciences ; Physics ; Physics, Applied ; Q factors ; Quantum computing ; Quantum dots ; Qubits (quantum computing) ; Science & Technology ; Silicon germanides ; Superconductivity ; Transistors</subject><ispartof>Applied physics letters, 2021-03, Vol.118 (12), Article 124001</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000632737200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c362t-f8434a483204660ff7a88dca69a447ed4a20fdc922d70ab6bc7d76dcfd446d9e3</citedby><cites>FETCH-LOGICAL-c362t-f8434a483204660ff7a88dca69a447ed4a20fdc922d70ab6bc7d76dcfd446d9e3</cites><orcidid>0000-0002-5341-0180 ; 0000-0001-7131-1250 ; 0000-0001-9901-4290 ; 0000-0002-6375-4737 ; 0000-0001-5979-6830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0038087$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27929,27930,39263,76389</link.rule.ids></links><search><creatorcontrib>Sandberg, Martin</creatorcontrib><creatorcontrib>Adiga, Vivekananda P.</creatorcontrib><creatorcontrib>Brink, Markus</creatorcontrib><creatorcontrib>Kurter, Cihan</creatorcontrib><creatorcontrib>Murray, Conal</creatorcontrib><creatorcontrib>Hopstaken, Marinus</creatorcontrib><creatorcontrib>Bruley, John</creatorcontrib><creatorcontrib>Orcutt, Jason S.</creatorcontrib><creatorcontrib>Paik, Hanhee</creatorcontrib><title>Investigating microwave loss of SiGe using superconducting transmon qubits</title><title>Applied physics letters</title><addtitle>APPL PHYS LETT</addtitle><description>Silicon-germanium (SiGe) is a material that possesses a multitude of applications ranging from transistors to electro-optical modulators and quantum dots. The diverse properties of SiGe also make it attractive to implementations involving superconducting quantum computing. Here, we demonstrate the fabrication of transmon quantum bits on SiGe layers and investigate the microwave loss properties of SiGe at cryogenic temperatures and single photon microwave powers. We find relaxation times of up to 100 μs, corresponding to a quality factor Q above 4 M for large pad transmons. The high Q values obtained indicate that the SiGe/Si heterostructure is compatible with state-of-the-art performance of superconducting quantum circuits.</description><subject>Applied physics</subject><subject>Cryogenic temperature</subject><subject>Germanium</subject><subject>Heterostructures</subject><subject>Modulators</subject><subject>Optical properties</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Q factors</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>Qubits (quantum computing)</subject><subject>Science & Technology</subject><subject>Silicon germanides</subject><subject>Superconductivity</subject><subject>Transistors</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkF9PwyAUxYnRxDl98Bs08UlNJwUK9NE0OmeW-KA-N5Q_S5cNOmi3-O1ldtEnjU-Xe_gduPcAcJnBSQYpvssnEGIOOTsCowwyluIs48dgBKOc0iLPTsFZCMvY5gjjEXie2a0OXbMQXWMXybqR3u3EVicrF0LiTPLaTHXSh_1l6FvtpbOql19w54UNa2eTTV83XTgHJ0asgr441DF4f3x4K5_S-ct0Vt7PU4kp6lLDCSaCcIwgoRQawwTnSgpaCEKYVkQgaJQsEFIMiprWkilGlTSKEKoKjcfgani39W7Tx-Grpeu9jV9WKIc4j1szFqnrgYoLheC1qVrfrIX_qDJY7aOq8uoQVWRvB3ana2eCbLSV-puPWVGMGGYonmAWaf5_umy6mKyzpettF603gzW6Bv3PqX6Ft87_gFWrDP4EKXKYvg</recordid><startdate>20210322</startdate><enddate>20210322</enddate><creator>Sandberg, Martin</creator><creator>Adiga, Vivekananda P.</creator><creator>Brink, Markus</creator><creator>Kurter, Cihan</creator><creator>Murray, Conal</creator><creator>Hopstaken, Marinus</creator><creator>Bruley, John</creator><creator>Orcutt, Jason S.</creator><creator>Paik, Hanhee</creator><general>Amer Inst Physics</general><general>American Institute of Physics</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5341-0180</orcidid><orcidid>https://orcid.org/0000-0001-7131-1250</orcidid><orcidid>https://orcid.org/0000-0001-9901-4290</orcidid><orcidid>https://orcid.org/0000-0002-6375-4737</orcidid><orcidid>https://orcid.org/0000-0001-5979-6830</orcidid></search><sort><creationdate>20210322</creationdate><title>Investigating microwave loss of SiGe using superconducting transmon qubits</title><author>Sandberg, Martin ; Adiga, Vivekananda P. ; Brink, Markus ; Kurter, Cihan ; Murray, Conal ; Hopstaken, Marinus ; Bruley, John ; Orcutt, Jason S. ; Paik, Hanhee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-f8434a483204660ff7a88dca69a447ed4a20fdc922d70ab6bc7d76dcfd446d9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Cryogenic temperature</topic><topic>Germanium</topic><topic>Heterostructures</topic><topic>Modulators</topic><topic>Optical properties</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Q factors</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>Qubits (quantum computing)</topic><topic>Science & Technology</topic><topic>Silicon germanides</topic><topic>Superconductivity</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandberg, Martin</creatorcontrib><creatorcontrib>Adiga, Vivekananda P.</creatorcontrib><creatorcontrib>Brink, Markus</creatorcontrib><creatorcontrib>Kurter, Cihan</creatorcontrib><creatorcontrib>Murray, Conal</creatorcontrib><creatorcontrib>Hopstaken, Marinus</creatorcontrib><creatorcontrib>Bruley, John</creatorcontrib><creatorcontrib>Orcutt, Jason S.</creatorcontrib><creatorcontrib>Paik, Hanhee</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandberg, Martin</au><au>Adiga, Vivekananda P.</au><au>Brink, Markus</au><au>Kurter, Cihan</au><au>Murray, Conal</au><au>Hopstaken, Marinus</au><au>Bruley, John</au><au>Orcutt, Jason S.</au><au>Paik, Hanhee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating microwave loss of SiGe using superconducting transmon qubits</atitle><jtitle>Applied physics letters</jtitle><stitle>APPL PHYS LETT</stitle><date>2021-03-22</date><risdate>2021</risdate><volume>118</volume><issue>12</issue><artnum>124001</artnum><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Silicon-germanium (SiGe) is a material that possesses a multitude of applications ranging from transistors to electro-optical modulators and quantum dots. The diverse properties of SiGe also make it attractive to implementations involving superconducting quantum computing. Here, we demonstrate the fabrication of transmon quantum bits on SiGe layers and investigate the microwave loss properties of SiGe at cryogenic temperatures and single photon microwave powers. We find relaxation times of up to 100 μs, corresponding to a quality factor Q above 4 M for large pad transmons. The high Q values obtained indicate that the SiGe/Si heterostructure is compatible with state-of-the-art performance of superconducting quantum circuits.</abstract><cop>MELVILLE</cop><pub>Amer Inst Physics</pub><doi>10.1063/5.0038087</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5341-0180</orcidid><orcidid>https://orcid.org/0000-0001-7131-1250</orcidid><orcidid>https://orcid.org/0000-0001-9901-4290</orcidid><orcidid>https://orcid.org/0000-0002-6375-4737</orcidid><orcidid>https://orcid.org/0000-0001-5979-6830</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2021-03, Vol.118 (12), Article 124001 |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_webofscience_primary_000632737200001 |
source | AIP Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | Applied physics Cryogenic temperature Germanium Heterostructures Modulators Optical properties Physical Sciences Physics Physics, Applied Q factors Quantum computing Quantum dots Qubits (quantum computing) Science & Technology Silicon germanides Superconductivity Transistors |
title | Investigating microwave loss of SiGe using superconducting transmon qubits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T00%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20microwave%20loss%20of%20SiGe%20using%20superconducting%20transmon%20qubits&rft.jtitle=Applied%20physics%20letters&rft.au=Sandberg,%20Martin&rft.date=2021-03-22&rft.volume=118&rft.issue=12&rft.artnum=124001&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0038087&rft_dat=%3Cproquest_webof%3E2503507777%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503507777&rft_id=info:pmid/&rfr_iscdi=true |