Bismuth oxycarbonate grafted NiFe-LDH supported on g-C3N4 as bifunctional catalyst for photoelectrochemical water splitting
In the present study, we report the synthesis of photoactive bismuth oxycarbonate (BOC, Bi2O2CO3) grafted NiFe layered double hydroxide (LDH) supported on g-C3N4 (15 wt% of g-C3N4) by coprecipitation method. The band gap of this photoactive material is determined to be 1.7 eV. The Bi2O2CO3 agglomera...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2021-03, Vol.46 (22), p.12145-12157 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12157 |
---|---|
container_issue | 22 |
container_start_page | 12145 |
container_title | International journal of hydrogen energy |
container_volume | 46 |
creator | Guru, Sruthi G., Ranga Rao |
description | In the present study, we report the synthesis of photoactive bismuth oxycarbonate (BOC, Bi2O2CO3) grafted NiFe layered double hydroxide (LDH) supported on g-C3N4 (15 wt% of g-C3N4) by coprecipitation method. The band gap of this photoactive material is determined to be 1.7 eV. The Bi2O2CO3 agglomerates are anchored on NiFe-LDH plates and g-C3N4 nanosheets intercalated between the LDH plates. This architecture helps in expediting electron transfer for hydrogen and oxygen evolution reactions. The pristine NiFe-LDH photoanode acquires bifunctional character because of Bi2O2CO3 agglomerates and g-C3N4 embedded in the architecture of BOC/NiFe-LDH@g-C3N4. This is found to be an efficient photoanode for oxygen evolution and photocathode for hydrogen evolution reactions. The water splitting process occurs along the heterojunction formed between g-C3N4 nanosheets and Bi2O2CO3 grafted NiFe-LDH. Further, an additional interfacial charge transfer aided by Bi2O2CO3 results in S-scheme mechanism, which enhances the rate of photoelectrochemical hydrogen and oxygen evolution reactions.
S-scheme mechanism of PEC water splitting with interfacial charge transfer in Bi2O2CO3/NiFe-LDH@g-C3N4. [Display omitted]
•Bi2O2CO3/NiFe-LDH@g-C3N4 bifunctional photoelectrocatalyst synthesized with band gap 1.7 eV.•It shows low recombination rate of charge carriers, and faster HER and OER.•S-scheme mechanism associated interfacial charger transfer aided by Bi2O2CO3. |
doi_str_mv | 10.1016/j.ijhydene.2020.04.116 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000632692900007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319920314725</els_id><sourcerecordid>S0360319920314725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-711bb2069c4e07cb079059c348e790c1ea80f8ddb8ff4e553dac931953d62343</originalsourceid><addsrcrecordid>eNqNkE1P4zAQhi0EEuXjLyDfVwnjOE3iG0t2-ZAquHC3HGfcukrjyHaBij-_rgpcl5NfWe8zmnkIuWKQM2DV9Tq369WuxxHzAgrIocwZq47IjDW1yHjZ1MdkBryCjDMhTslZCGsAVkMpZuTj1obNNq6oe99p5Ts3qoh06ZWJ2NMne4fZ4s8DDdtpcn7_5Ua6zFr-VFIVaGfNdtTRJmqgWkU17EKkxnk6rVx0OKCO3ukVbqxOjbc029MwDTZGOy4vyIlRQ8DLz_ecvNz9fWkfssXz_WP7e5FpzoqY1Yx1XQGV0CVCrTuoBcyFTodhSpqhasA0fd81xpQ4n_NeaZFOTaEqeMnPSXUYq70LwaORk7cb5XeSgdwblGv5ZVDuDUooZTKYwOYAvmHnTNAWR43fMABUvKhEIVKCurVR7UW0bjvGhP76OZraN4c2JguvFr38JHrrk0HZO_u_Xf8BfzWgoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bismuth oxycarbonate grafted NiFe-LDH supported on g-C3N4 as bifunctional catalyst for photoelectrochemical water splitting</title><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><creator>Guru, Sruthi ; G., Ranga Rao</creator><creatorcontrib>Guru, Sruthi ; G., Ranga Rao</creatorcontrib><description>In the present study, we report the synthesis of photoactive bismuth oxycarbonate (BOC, Bi2O2CO3) grafted NiFe layered double hydroxide (LDH) supported on g-C3N4 (15 wt% of g-C3N4) by coprecipitation method. The band gap of this photoactive material is determined to be 1.7 eV. The Bi2O2CO3 agglomerates are anchored on NiFe-LDH plates and g-C3N4 nanosheets intercalated between the LDH plates. This architecture helps in expediting electron transfer for hydrogen and oxygen evolution reactions. The pristine NiFe-LDH photoanode acquires bifunctional character because of Bi2O2CO3 agglomerates and g-C3N4 embedded in the architecture of BOC/NiFe-LDH@g-C3N4. This is found to be an efficient photoanode for oxygen evolution and photocathode for hydrogen evolution reactions. The water splitting process occurs along the heterojunction formed between g-C3N4 nanosheets and Bi2O2CO3 grafted NiFe-LDH. Further, an additional interfacial charge transfer aided by Bi2O2CO3 results in S-scheme mechanism, which enhances the rate of photoelectrochemical hydrogen and oxygen evolution reactions.
S-scheme mechanism of PEC water splitting with interfacial charge transfer in Bi2O2CO3/NiFe-LDH@g-C3N4. [Display omitted]
•Bi2O2CO3/NiFe-LDH@g-C3N4 bifunctional photoelectrocatalyst synthesized with band gap 1.7 eV.•It shows low recombination rate of charge carriers, and faster HER and OER.•S-scheme mechanism associated interfacial charger transfer aided by Bi2O2CO3.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2020.04.116</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Bismuth oxycarbonate ; Chemistry ; Chemistry, Physical ; Electrochemistry ; Energy & Fuels ; G-C3N4 ; Layered double hydroxides ; Photoelectrochemical ; Physical Sciences ; S-scheme ; Science & Technology ; Technology ; Water splitting</subject><ispartof>International journal of hydrogen energy, 2021-03, Vol.46 (22), p.12145-12157</ispartof><rights>2020 Hydrogen Energy Publications LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>23</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000632692900007</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c312t-711bb2069c4e07cb079059c348e790c1ea80f8ddb8ff4e553dac931953d62343</citedby><cites>FETCH-LOGICAL-c312t-711bb2069c4e07cb079059c348e790c1ea80f8ddb8ff4e553dac931953d62343</cites><orcidid>0000-0002-7388-6434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2020.04.116$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,39265,46002</link.rule.ids></links><search><creatorcontrib>Guru, Sruthi</creatorcontrib><creatorcontrib>G., Ranga Rao</creatorcontrib><title>Bismuth oxycarbonate grafted NiFe-LDH supported on g-C3N4 as bifunctional catalyst for photoelectrochemical water splitting</title><title>International journal of hydrogen energy</title><addtitle>INT J HYDROGEN ENERG</addtitle><description>In the present study, we report the synthesis of photoactive bismuth oxycarbonate (BOC, Bi2O2CO3) grafted NiFe layered double hydroxide (LDH) supported on g-C3N4 (15 wt% of g-C3N4) by coprecipitation method. The band gap of this photoactive material is determined to be 1.7 eV. The Bi2O2CO3 agglomerates are anchored on NiFe-LDH plates and g-C3N4 nanosheets intercalated between the LDH plates. This architecture helps in expediting electron transfer for hydrogen and oxygen evolution reactions. The pristine NiFe-LDH photoanode acquires bifunctional character because of Bi2O2CO3 agglomerates and g-C3N4 embedded in the architecture of BOC/NiFe-LDH@g-C3N4. This is found to be an efficient photoanode for oxygen evolution and photocathode for hydrogen evolution reactions. The water splitting process occurs along the heterojunction formed between g-C3N4 nanosheets and Bi2O2CO3 grafted NiFe-LDH. Further, an additional interfacial charge transfer aided by Bi2O2CO3 results in S-scheme mechanism, which enhances the rate of photoelectrochemical hydrogen and oxygen evolution reactions.
S-scheme mechanism of PEC water splitting with interfacial charge transfer in Bi2O2CO3/NiFe-LDH@g-C3N4. [Display omitted]
•Bi2O2CO3/NiFe-LDH@g-C3N4 bifunctional photoelectrocatalyst synthesized with band gap 1.7 eV.•It shows low recombination rate of charge carriers, and faster HER and OER.•S-scheme mechanism associated interfacial charger transfer aided by Bi2O2CO3.</description><subject>Bismuth oxycarbonate</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Electrochemistry</subject><subject>Energy & Fuels</subject><subject>G-C3N4</subject><subject>Layered double hydroxides</subject><subject>Photoelectrochemical</subject><subject>Physical Sciences</subject><subject>S-scheme</subject><subject>Science & Technology</subject><subject>Technology</subject><subject>Water splitting</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE1P4zAQhi0EEuXjLyDfVwnjOE3iG0t2-ZAquHC3HGfcukrjyHaBij-_rgpcl5NfWe8zmnkIuWKQM2DV9Tq369WuxxHzAgrIocwZq47IjDW1yHjZ1MdkBryCjDMhTslZCGsAVkMpZuTj1obNNq6oe99p5Ts3qoh06ZWJ2NMne4fZ4s8DDdtpcn7_5Ua6zFr-VFIVaGfNdtTRJmqgWkU17EKkxnk6rVx0OKCO3ukVbqxOjbc029MwDTZGOy4vyIlRQ8DLz_ecvNz9fWkfssXz_WP7e5FpzoqY1Yx1XQGV0CVCrTuoBcyFTodhSpqhasA0fd81xpQ4n_NeaZFOTaEqeMnPSXUYq70LwaORk7cb5XeSgdwblGv5ZVDuDUooZTKYwOYAvmHnTNAWR43fMABUvKhEIVKCurVR7UW0bjvGhP76OZraN4c2JguvFr38JHrrk0HZO_u_Xf8BfzWgoA</recordid><startdate>20210326</startdate><enddate>20210326</enddate><creator>Guru, Sruthi</creator><creator>G., Ranga Rao</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7388-6434</orcidid></search><sort><creationdate>20210326</creationdate><title>Bismuth oxycarbonate grafted NiFe-LDH supported on g-C3N4 as bifunctional catalyst for photoelectrochemical water splitting</title><author>Guru, Sruthi ; G., Ranga Rao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-711bb2069c4e07cb079059c348e790c1ea80f8ddb8ff4e553dac931953d62343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bismuth oxycarbonate</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Electrochemistry</topic><topic>Energy & Fuels</topic><topic>G-C3N4</topic><topic>Layered double hydroxides</topic><topic>Photoelectrochemical</topic><topic>Physical Sciences</topic><topic>S-scheme</topic><topic>Science & Technology</topic><topic>Technology</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guru, Sruthi</creatorcontrib><creatorcontrib>G., Ranga Rao</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guru, Sruthi</au><au>G., Ranga Rao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bismuth oxycarbonate grafted NiFe-LDH supported on g-C3N4 as bifunctional catalyst for photoelectrochemical water splitting</atitle><jtitle>International journal of hydrogen energy</jtitle><stitle>INT J HYDROGEN ENERG</stitle><date>2021-03-26</date><risdate>2021</risdate><volume>46</volume><issue>22</issue><spage>12145</spage><epage>12157</epage><pages>12145-12157</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><abstract>In the present study, we report the synthesis of photoactive bismuth oxycarbonate (BOC, Bi2O2CO3) grafted NiFe layered double hydroxide (LDH) supported on g-C3N4 (15 wt% of g-C3N4) by coprecipitation method. The band gap of this photoactive material is determined to be 1.7 eV. The Bi2O2CO3 agglomerates are anchored on NiFe-LDH plates and g-C3N4 nanosheets intercalated between the LDH plates. This architecture helps in expediting electron transfer for hydrogen and oxygen evolution reactions. The pristine NiFe-LDH photoanode acquires bifunctional character because of Bi2O2CO3 agglomerates and g-C3N4 embedded in the architecture of BOC/NiFe-LDH@g-C3N4. This is found to be an efficient photoanode for oxygen evolution and photocathode for hydrogen evolution reactions. The water splitting process occurs along the heterojunction formed between g-C3N4 nanosheets and Bi2O2CO3 grafted NiFe-LDH. Further, an additional interfacial charge transfer aided by Bi2O2CO3 results in S-scheme mechanism, which enhances the rate of photoelectrochemical hydrogen and oxygen evolution reactions.
S-scheme mechanism of PEC water splitting with interfacial charge transfer in Bi2O2CO3/NiFe-LDH@g-C3N4. [Display omitted]
•Bi2O2CO3/NiFe-LDH@g-C3N4 bifunctional photoelectrocatalyst synthesized with band gap 1.7 eV.•It shows low recombination rate of charge carriers, and faster HER and OER.•S-scheme mechanism associated interfacial charger transfer aided by Bi2O2CO3.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2020.04.116</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7388-6434</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2021-03, Vol.46 (22), p.12145-12157 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_webofscience_primary_000632692900007 |
source | Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier) |
subjects | Bismuth oxycarbonate Chemistry Chemistry, Physical Electrochemistry Energy & Fuels G-C3N4 Layered double hydroxides Photoelectrochemical Physical Sciences S-scheme Science & Technology Technology Water splitting |
title | Bismuth oxycarbonate grafted NiFe-LDH supported on g-C3N4 as bifunctional catalyst for photoelectrochemical water splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T00%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bismuth%20oxycarbonate%20grafted%20NiFe-LDH%20supported%20on%20g-C3N4%20as%20bifunctional%20catalyst%20for%20photoelectrochemical%20water%20splitting&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Guru,%20Sruthi&rft.date=2021-03-26&rft.volume=46&rft.issue=22&rft.spage=12145&rft.epage=12157&rft.pages=12145-12157&rft.issn=0360-3199&rft.eissn=1879-3487&rft_id=info:doi/10.1016/j.ijhydene.2020.04.116&rft_dat=%3Celsevier_webof%3ES0360319920314725%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0360319920314725&rfr_iscdi=true |