Bismuth oxycarbonate grafted NiFe-LDH supported on g-C3N4 as bifunctional catalyst for photoelectrochemical water splitting

In the present study, we report the synthesis of photoactive bismuth oxycarbonate (BOC, Bi2O2CO3) grafted NiFe layered double hydroxide (LDH) supported on g-C3N4 (15 wt% of g-C3N4) by coprecipitation method. The band gap of this photoactive material is determined to be 1.7 eV. The Bi2O2CO3 agglomera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2021-03, Vol.46 (22), p.12145-12157
Hauptverfasser: Guru, Sruthi, G., Ranga Rao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12157
container_issue 22
container_start_page 12145
container_title International journal of hydrogen energy
container_volume 46
creator Guru, Sruthi
G., Ranga Rao
description In the present study, we report the synthesis of photoactive bismuth oxycarbonate (BOC, Bi2O2CO3) grafted NiFe layered double hydroxide (LDH) supported on g-C3N4 (15 wt% of g-C3N4) by coprecipitation method. The band gap of this photoactive material is determined to be 1.7 eV. The Bi2O2CO3 agglomerates are anchored on NiFe-LDH plates and g-C3N4 nanosheets intercalated between the LDH plates. This architecture helps in expediting electron transfer for hydrogen and oxygen evolution reactions. The pristine NiFe-LDH photoanode acquires bifunctional character because of Bi2O2CO3 agglomerates and g-C3N4 embedded in the architecture of BOC/NiFe-LDH@g-C3N4. This is found to be an efficient photoanode for oxygen evolution and photocathode for hydrogen evolution reactions. The water splitting process occurs along the heterojunction formed between g-C3N4 nanosheets and Bi2O2CO3 grafted NiFe-LDH. Further, an additional interfacial charge transfer aided by Bi2O2CO3 results in S-scheme mechanism, which enhances the rate of photoelectrochemical hydrogen and oxygen evolution reactions. S-scheme mechanism of PEC water splitting with interfacial charge transfer in Bi2O2CO3/NiFe-LDH@g-C3N4. [Display omitted] •Bi2O2CO3/NiFe-LDH@g-C3N4 bifunctional photoelectrocatalyst synthesized with band gap 1.7 eV.•It shows low recombination rate of charge carriers, and faster HER and OER.•S-scheme mechanism associated interfacial charger transfer aided by Bi2O2CO3.
doi_str_mv 10.1016/j.ijhydene.2020.04.116
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000632692900007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319920314725</els_id><sourcerecordid>S0360319920314725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-711bb2069c4e07cb079059c348e790c1ea80f8ddb8ff4e553dac931953d62343</originalsourceid><addsrcrecordid>eNqNkE1P4zAQhi0EEuXjLyDfVwnjOE3iG0t2-ZAquHC3HGfcukrjyHaBij-_rgpcl5NfWe8zmnkIuWKQM2DV9Tq369WuxxHzAgrIocwZq47IjDW1yHjZ1MdkBryCjDMhTslZCGsAVkMpZuTj1obNNq6oe99p5Ts3qoh06ZWJ2NMne4fZ4s8DDdtpcn7_5Ua6zFr-VFIVaGfNdtTRJmqgWkU17EKkxnk6rVx0OKCO3ukVbqxOjbc029MwDTZGOy4vyIlRQ8DLz_ecvNz9fWkfssXz_WP7e5FpzoqY1Yx1XQGV0CVCrTuoBcyFTodhSpqhasA0fd81xpQ4n_NeaZFOTaEqeMnPSXUYq70LwaORk7cb5XeSgdwblGv5ZVDuDUooZTKYwOYAvmHnTNAWR43fMABUvKhEIVKCurVR7UW0bjvGhP76OZraN4c2JguvFr38JHrrk0HZO_u_Xf8BfzWgoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bismuth oxycarbonate grafted NiFe-LDH supported on g-C3N4 as bifunctional catalyst for photoelectrochemical water splitting</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Guru, Sruthi ; G., Ranga Rao</creator><creatorcontrib>Guru, Sruthi ; G., Ranga Rao</creatorcontrib><description>In the present study, we report the synthesis of photoactive bismuth oxycarbonate (BOC, Bi2O2CO3) grafted NiFe layered double hydroxide (LDH) supported on g-C3N4 (15 wt% of g-C3N4) by coprecipitation method. The band gap of this photoactive material is determined to be 1.7 eV. The Bi2O2CO3 agglomerates are anchored on NiFe-LDH plates and g-C3N4 nanosheets intercalated between the LDH plates. This architecture helps in expediting electron transfer for hydrogen and oxygen evolution reactions. The pristine NiFe-LDH photoanode acquires bifunctional character because of Bi2O2CO3 agglomerates and g-C3N4 embedded in the architecture of BOC/NiFe-LDH@g-C3N4. This is found to be an efficient photoanode for oxygen evolution and photocathode for hydrogen evolution reactions. The water splitting process occurs along the heterojunction formed between g-C3N4 nanosheets and Bi2O2CO3 grafted NiFe-LDH. Further, an additional interfacial charge transfer aided by Bi2O2CO3 results in S-scheme mechanism, which enhances the rate of photoelectrochemical hydrogen and oxygen evolution reactions. S-scheme mechanism of PEC water splitting with interfacial charge transfer in Bi2O2CO3/NiFe-LDH@g-C3N4. [Display omitted] •Bi2O2CO3/NiFe-LDH@g-C3N4 bifunctional photoelectrocatalyst synthesized with band gap 1.7 eV.•It shows low recombination rate of charge carriers, and faster HER and OER.•S-scheme mechanism associated interfacial charger transfer aided by Bi2O2CO3.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2020.04.116</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Bismuth oxycarbonate ; Chemistry ; Chemistry, Physical ; Electrochemistry ; Energy &amp; Fuels ; G-C3N4 ; Layered double hydroxides ; Photoelectrochemical ; Physical Sciences ; S-scheme ; Science &amp; Technology ; Technology ; Water splitting</subject><ispartof>International journal of hydrogen energy, 2021-03, Vol.46 (22), p.12145-12157</ispartof><rights>2020 Hydrogen Energy Publications LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>23</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000632692900007</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c312t-711bb2069c4e07cb079059c348e790c1ea80f8ddb8ff4e553dac931953d62343</citedby><cites>FETCH-LOGICAL-c312t-711bb2069c4e07cb079059c348e790c1ea80f8ddb8ff4e553dac931953d62343</cites><orcidid>0000-0002-7388-6434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2020.04.116$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,39265,46002</link.rule.ids></links><search><creatorcontrib>Guru, Sruthi</creatorcontrib><creatorcontrib>G., Ranga Rao</creatorcontrib><title>Bismuth oxycarbonate grafted NiFe-LDH supported on g-C3N4 as bifunctional catalyst for photoelectrochemical water splitting</title><title>International journal of hydrogen energy</title><addtitle>INT J HYDROGEN ENERG</addtitle><description>In the present study, we report the synthesis of photoactive bismuth oxycarbonate (BOC, Bi2O2CO3) grafted NiFe layered double hydroxide (LDH) supported on g-C3N4 (15 wt% of g-C3N4) by coprecipitation method. The band gap of this photoactive material is determined to be 1.7 eV. The Bi2O2CO3 agglomerates are anchored on NiFe-LDH plates and g-C3N4 nanosheets intercalated between the LDH plates. This architecture helps in expediting electron transfer for hydrogen and oxygen evolution reactions. The pristine NiFe-LDH photoanode acquires bifunctional character because of Bi2O2CO3 agglomerates and g-C3N4 embedded in the architecture of BOC/NiFe-LDH@g-C3N4. This is found to be an efficient photoanode for oxygen evolution and photocathode for hydrogen evolution reactions. The water splitting process occurs along the heterojunction formed between g-C3N4 nanosheets and Bi2O2CO3 grafted NiFe-LDH. Further, an additional interfacial charge transfer aided by Bi2O2CO3 results in S-scheme mechanism, which enhances the rate of photoelectrochemical hydrogen and oxygen evolution reactions. S-scheme mechanism of PEC water splitting with interfacial charge transfer in Bi2O2CO3/NiFe-LDH@g-C3N4. [Display omitted] •Bi2O2CO3/NiFe-LDH@g-C3N4 bifunctional photoelectrocatalyst synthesized with band gap 1.7 eV.•It shows low recombination rate of charge carriers, and faster HER and OER.•S-scheme mechanism associated interfacial charger transfer aided by Bi2O2CO3.</description><subject>Bismuth oxycarbonate</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Electrochemistry</subject><subject>Energy &amp; Fuels</subject><subject>G-C3N4</subject><subject>Layered double hydroxides</subject><subject>Photoelectrochemical</subject><subject>Physical Sciences</subject><subject>S-scheme</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>Water splitting</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE1P4zAQhi0EEuXjLyDfVwnjOE3iG0t2-ZAquHC3HGfcukrjyHaBij-_rgpcl5NfWe8zmnkIuWKQM2DV9Tq369WuxxHzAgrIocwZq47IjDW1yHjZ1MdkBryCjDMhTslZCGsAVkMpZuTj1obNNq6oe99p5Ts3qoh06ZWJ2NMne4fZ4s8DDdtpcn7_5Ua6zFr-VFIVaGfNdtTRJmqgWkU17EKkxnk6rVx0OKCO3ukVbqxOjbc029MwDTZGOy4vyIlRQ8DLz_ecvNz9fWkfssXz_WP7e5FpzoqY1Yx1XQGV0CVCrTuoBcyFTodhSpqhasA0fd81xpQ4n_NeaZFOTaEqeMnPSXUYq70LwaORk7cb5XeSgdwblGv5ZVDuDUooZTKYwOYAvmHnTNAWR43fMABUvKhEIVKCurVR7UW0bjvGhP76OZraN4c2JguvFr38JHrrk0HZO_u_Xf8BfzWgoA</recordid><startdate>20210326</startdate><enddate>20210326</enddate><creator>Guru, Sruthi</creator><creator>G., Ranga Rao</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7388-6434</orcidid></search><sort><creationdate>20210326</creationdate><title>Bismuth oxycarbonate grafted NiFe-LDH supported on g-C3N4 as bifunctional catalyst for photoelectrochemical water splitting</title><author>Guru, Sruthi ; G., Ranga Rao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-711bb2069c4e07cb079059c348e790c1ea80f8ddb8ff4e553dac931953d62343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bismuth oxycarbonate</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Electrochemistry</topic><topic>Energy &amp; Fuels</topic><topic>G-C3N4</topic><topic>Layered double hydroxides</topic><topic>Photoelectrochemical</topic><topic>Physical Sciences</topic><topic>S-scheme</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guru, Sruthi</creatorcontrib><creatorcontrib>G., Ranga Rao</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guru, Sruthi</au><au>G., Ranga Rao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bismuth oxycarbonate grafted NiFe-LDH supported on g-C3N4 as bifunctional catalyst for photoelectrochemical water splitting</atitle><jtitle>International journal of hydrogen energy</jtitle><stitle>INT J HYDROGEN ENERG</stitle><date>2021-03-26</date><risdate>2021</risdate><volume>46</volume><issue>22</issue><spage>12145</spage><epage>12157</epage><pages>12145-12157</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><abstract>In the present study, we report the synthesis of photoactive bismuth oxycarbonate (BOC, Bi2O2CO3) grafted NiFe layered double hydroxide (LDH) supported on g-C3N4 (15 wt% of g-C3N4) by coprecipitation method. The band gap of this photoactive material is determined to be 1.7 eV. The Bi2O2CO3 agglomerates are anchored on NiFe-LDH plates and g-C3N4 nanosheets intercalated between the LDH plates. This architecture helps in expediting electron transfer for hydrogen and oxygen evolution reactions. The pristine NiFe-LDH photoanode acquires bifunctional character because of Bi2O2CO3 agglomerates and g-C3N4 embedded in the architecture of BOC/NiFe-LDH@g-C3N4. This is found to be an efficient photoanode for oxygen evolution and photocathode for hydrogen evolution reactions. The water splitting process occurs along the heterojunction formed between g-C3N4 nanosheets and Bi2O2CO3 grafted NiFe-LDH. Further, an additional interfacial charge transfer aided by Bi2O2CO3 results in S-scheme mechanism, which enhances the rate of photoelectrochemical hydrogen and oxygen evolution reactions. S-scheme mechanism of PEC water splitting with interfacial charge transfer in Bi2O2CO3/NiFe-LDH@g-C3N4. [Display omitted] •Bi2O2CO3/NiFe-LDH@g-C3N4 bifunctional photoelectrocatalyst synthesized with band gap 1.7 eV.•It shows low recombination rate of charge carriers, and faster HER and OER.•S-scheme mechanism associated interfacial charger transfer aided by Bi2O2CO3.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2020.04.116</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7388-6434</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2021-03, Vol.46 (22), p.12145-12157
issn 0360-3199
1879-3487
language eng
recordid cdi_webofscience_primary_000632692900007
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Bismuth oxycarbonate
Chemistry
Chemistry, Physical
Electrochemistry
Energy & Fuels
G-C3N4
Layered double hydroxides
Photoelectrochemical
Physical Sciences
S-scheme
Science & Technology
Technology
Water splitting
title Bismuth oxycarbonate grafted NiFe-LDH supported on g-C3N4 as bifunctional catalyst for photoelectrochemical water splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T00%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bismuth%20oxycarbonate%20grafted%20NiFe-LDH%20supported%20on%20g-C3N4%20as%20bifunctional%20catalyst%20for%20photoelectrochemical%20water%20splitting&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Guru,%20Sruthi&rft.date=2021-03-26&rft.volume=46&rft.issue=22&rft.spage=12145&rft.epage=12157&rft.pages=12145-12157&rft.issn=0360-3199&rft.eissn=1879-3487&rft_id=info:doi/10.1016/j.ijhydene.2020.04.116&rft_dat=%3Celsevier_webof%3ES0360319920314725%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0360319920314725&rfr_iscdi=true