Numerical simulation on LMR molten-core centralized sloshing benchmark experiment using multi-phase smoothed particle hydrodynamics

The Smoothed Particle Hydrodynamics is one of the most widely used mesh-free numerical method for thermo-fluid dynamics. Due to its Lagrangian nature and simplicity, it is recently gaining popularity in simulating complex physics with large deformations. In this study, the 3D single/two-phase numeri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and technology 2021-03, Vol.53 (3), p.752-762
Hauptverfasser: Jo, Young Beom, Park, So-Hyun, Park, Juryong, Kim, Eung Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 762
container_issue 3
container_start_page 752
container_title Nuclear engineering and technology
container_volume 53
creator Jo, Young Beom
Park, So-Hyun
Park, Juryong
Kim, Eung Soo
description The Smoothed Particle Hydrodynamics is one of the most widely used mesh-free numerical method for thermo-fluid dynamics. Due to its Lagrangian nature and simplicity, it is recently gaining popularity in simulating complex physics with large deformations. In this study, the 3D single/two-phase numerical simulations are performed on the Liquid Metal Reactor (LMR) centralized sloshing benchmark experiment using the SPH parallelized using a GPU. In order to capture multi-phase flows with a large density ratio more effectively, the original SPH density and continuity equations are re-formulated in terms of the normalized-density. Based upon this approach, maximum sloshing height and arrival time in various experimental cases are calculated by using both single-phase and multi-phase SPH framework and the results are compared with the benchmark results. Overall, the results of SPH simulations show excellent agreement with all the benchmark experiments both in qualitative and quantitative manners. According to the sensitivity study of the particle-size, the prediction accuracy is gradually increasing with decreasing the particle-size leading to a higher resolution. In addition, it is found that the multi-phase SPH model considering both liquid and air provides a better prediction on the experimental results and the reality.
doi_str_mv 10.1016/j.net.2020.07.039
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000631704600005CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1738573320308019</els_id><doaj_id>oai_doaj_org_article_67acf87f3ae94ba98697e0226f6b4012</doaj_id><sourcerecordid>S1738573320308019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-f74dd19a40cfe9471e656349f0f350e3b62daaaaea95920b2cda1927571769b13</originalsourceid><addsrcrecordid>eNqNkU-PFCEQxfugieuuH8Abd9Nt0XTDEE9m4p9NxjUxeiY0XewwdjcTYNTx6he3ZmeyRyMhgUD9Ho96VfWSQ8OBy9e7ZsHStNBCA6oBoZ9UV1yJVd0rIZ5Vz3PeAciuU3BV_bk7zJiCsxPLYT5MtoS4MJqbT1_YHKeCS-1iQuZwKclO4TeOLE8xb8NyzwZc3Ha26TvDX3uSmamIHfLpirRKqPdbm5HlOcayJXBvUwluQrY9jimOx8XOweWb6qm3U8YXl_W6-vb-3df1x3rz-cPt-u2mdh3IUnvVjSPXtgPnUXeKo-yl6LQHL3pAMch2tDTQ6l63MLRutFy3qldcST1wcV3dnnXHaHdmT3ZtOppog3k4iOneXPwZqazzK-WFpZcGq1dSK4S2lV4OHfCWtPhZy6WYc0L_qMfBnFIwO0MpmFMKBpShFIhZnZmfOESfXaDu4SMHlIngCjpJO-jXoTxksY6HpRD66v9Rqn5zrkbq5o-AyVyIMSR0hb4b_mHzL0dttjo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical simulation on LMR molten-core centralized sloshing benchmark experiment using multi-phase smoothed particle hydrodynamics</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Jo, Young Beom ; Park, So-Hyun ; Park, Juryong ; Kim, Eung Soo</creator><creatorcontrib>Jo, Young Beom ; Park, So-Hyun ; Park, Juryong ; Kim, Eung Soo</creatorcontrib><description>The Smoothed Particle Hydrodynamics is one of the most widely used mesh-free numerical method for thermo-fluid dynamics. Due to its Lagrangian nature and simplicity, it is recently gaining popularity in simulating complex physics with large deformations. In this study, the 3D single/two-phase numerical simulations are performed on the Liquid Metal Reactor (LMR) centralized sloshing benchmark experiment using the SPH parallelized using a GPU. In order to capture multi-phase flows with a large density ratio more effectively, the original SPH density and continuity equations are re-formulated in terms of the normalized-density. Based upon this approach, maximum sloshing height and arrival time in various experimental cases are calculated by using both single-phase and multi-phase SPH framework and the results are compared with the benchmark results. Overall, the results of SPH simulations show excellent agreement with all the benchmark experiments both in qualitative and quantitative manners. According to the sensitivity study of the particle-size, the prediction accuracy is gradually increasing with decreasing the particle-size leading to a higher resolution. In addition, it is found that the multi-phase SPH model considering both liquid and air provides a better prediction on the experimental results and the reality.</description><identifier>ISSN: 1738-5733</identifier><identifier>DOI: 10.1016/j.net.2020.07.039</identifier><language>eng</language><publisher>DAEJEON: Elsevier B.V</publisher><subject>Centralized sloshing ; Core disruptive accident ; Liquid metal reactor ; Multi-phase ; Normalized-density ; Nuclear Science &amp; Technology ; Science &amp; Technology ; Smoothed particle hydrodynamics ; Technology</subject><ispartof>Nuclear engineering and technology, 2021-03, Vol.53 (3), p.752-762</ispartof><rights>2020 Korean Nuclear Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000631704600005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c406t-f74dd19a40cfe9471e656349f0f350e3b62daaaaea95920b2cda1927571769b13</citedby><cites>FETCH-LOGICAL-c406t-f74dd19a40cfe9471e656349f0f350e3b62daaaaea95920b2cda1927571769b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Jo, Young Beom</creatorcontrib><creatorcontrib>Park, So-Hyun</creatorcontrib><creatorcontrib>Park, Juryong</creatorcontrib><creatorcontrib>Kim, Eung Soo</creatorcontrib><title>Numerical simulation on LMR molten-core centralized sloshing benchmark experiment using multi-phase smoothed particle hydrodynamics</title><title>Nuclear engineering and technology</title><addtitle>NUCL ENG TECHNOL</addtitle><description>The Smoothed Particle Hydrodynamics is one of the most widely used mesh-free numerical method for thermo-fluid dynamics. Due to its Lagrangian nature and simplicity, it is recently gaining popularity in simulating complex physics with large deformations. In this study, the 3D single/two-phase numerical simulations are performed on the Liquid Metal Reactor (LMR) centralized sloshing benchmark experiment using the SPH parallelized using a GPU. In order to capture multi-phase flows with a large density ratio more effectively, the original SPH density and continuity equations are re-formulated in terms of the normalized-density. Based upon this approach, maximum sloshing height and arrival time in various experimental cases are calculated by using both single-phase and multi-phase SPH framework and the results are compared with the benchmark results. Overall, the results of SPH simulations show excellent agreement with all the benchmark experiments both in qualitative and quantitative manners. According to the sensitivity study of the particle-size, the prediction accuracy is gradually increasing with decreasing the particle-size leading to a higher resolution. In addition, it is found that the multi-phase SPH model considering both liquid and air provides a better prediction on the experimental results and the reality.</description><subject>Centralized sloshing</subject><subject>Core disruptive accident</subject><subject>Liquid metal reactor</subject><subject>Multi-phase</subject><subject>Normalized-density</subject><subject>Nuclear Science &amp; Technology</subject><subject>Science &amp; Technology</subject><subject>Smoothed particle hydrodynamics</subject><subject>Technology</subject><issn>1738-5733</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU-PFCEQxfugieuuH8Abd9Nt0XTDEE9m4p9NxjUxeiY0XewwdjcTYNTx6he3ZmeyRyMhgUD9Ho96VfWSQ8OBy9e7ZsHStNBCA6oBoZ9UV1yJVd0rIZ5Vz3PeAciuU3BV_bk7zJiCsxPLYT5MtoS4MJqbT1_YHKeCS-1iQuZwKclO4TeOLE8xb8NyzwZc3Ha26TvDX3uSmamIHfLpirRKqPdbm5HlOcayJXBvUwluQrY9jimOx8XOweWb6qm3U8YXl_W6-vb-3df1x3rz-cPt-u2mdh3IUnvVjSPXtgPnUXeKo-yl6LQHL3pAMch2tDTQ6l63MLRutFy3qldcST1wcV3dnnXHaHdmT3ZtOppog3k4iOneXPwZqazzK-WFpZcGq1dSK4S2lV4OHfCWtPhZy6WYc0L_qMfBnFIwO0MpmFMKBpShFIhZnZmfOESfXaDu4SMHlIngCjpJO-jXoTxksY6HpRD66v9Rqn5zrkbq5o-AyVyIMSR0hb4b_mHzL0dttjo</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Jo, Young Beom</creator><creator>Park, So-Hyun</creator><creator>Park, Juryong</creator><creator>Kim, Eung Soo</creator><general>Elsevier B.V</general><general>Korean Nuclear Soc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202103</creationdate><title>Numerical simulation on LMR molten-core centralized sloshing benchmark experiment using multi-phase smoothed particle hydrodynamics</title><author>Jo, Young Beom ; Park, So-Hyun ; Park, Juryong ; Kim, Eung Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-f74dd19a40cfe9471e656349f0f350e3b62daaaaea95920b2cda1927571769b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Centralized sloshing</topic><topic>Core disruptive accident</topic><topic>Liquid metal reactor</topic><topic>Multi-phase</topic><topic>Normalized-density</topic><topic>Nuclear Science &amp; Technology</topic><topic>Science &amp; Technology</topic><topic>Smoothed particle hydrodynamics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Young Beom</creatorcontrib><creatorcontrib>Park, So-Hyun</creatorcontrib><creatorcontrib>Park, Juryong</creatorcontrib><creatorcontrib>Kim, Eung Soo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nuclear engineering and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Young Beom</au><au>Park, So-Hyun</au><au>Park, Juryong</au><au>Kim, Eung Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation on LMR molten-core centralized sloshing benchmark experiment using multi-phase smoothed particle hydrodynamics</atitle><jtitle>Nuclear engineering and technology</jtitle><stitle>NUCL ENG TECHNOL</stitle><date>2021-03</date><risdate>2021</risdate><volume>53</volume><issue>3</issue><spage>752</spage><epage>762</epage><pages>752-762</pages><issn>1738-5733</issn><abstract>The Smoothed Particle Hydrodynamics is one of the most widely used mesh-free numerical method for thermo-fluid dynamics. Due to its Lagrangian nature and simplicity, it is recently gaining popularity in simulating complex physics with large deformations. In this study, the 3D single/two-phase numerical simulations are performed on the Liquid Metal Reactor (LMR) centralized sloshing benchmark experiment using the SPH parallelized using a GPU. In order to capture multi-phase flows with a large density ratio more effectively, the original SPH density and continuity equations are re-formulated in terms of the normalized-density. Based upon this approach, maximum sloshing height and arrival time in various experimental cases are calculated by using both single-phase and multi-phase SPH framework and the results are compared with the benchmark results. Overall, the results of SPH simulations show excellent agreement with all the benchmark experiments both in qualitative and quantitative manners. According to the sensitivity study of the particle-size, the prediction accuracy is gradually increasing with decreasing the particle-size leading to a higher resolution. In addition, it is found that the multi-phase SPH model considering both liquid and air provides a better prediction on the experimental results and the reality.</abstract><cop>DAEJEON</cop><pub>Elsevier B.V</pub><doi>10.1016/j.net.2020.07.039</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1738-5733
ispartof Nuclear engineering and technology, 2021-03, Vol.53 (3), p.752-762
issn 1738-5733
language eng
recordid cdi_webofscience_primary_000631704600005CitationCount
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Centralized sloshing
Core disruptive accident
Liquid metal reactor
Multi-phase
Normalized-density
Nuclear Science & Technology
Science & Technology
Smoothed particle hydrodynamics
Technology
title Numerical simulation on LMR molten-core centralized sloshing benchmark experiment using multi-phase smoothed particle hydrodynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T04%3A49%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20on%20LMR%20molten-core%20centralized%20sloshing%20benchmark%20experiment%20using%20multi-phase%20smoothed%20particle%20hydrodynamics&rft.jtitle=Nuclear%20engineering%20and%20technology&rft.au=Jo,%20Young%20Beom&rft.date=2021-03&rft.volume=53&rft.issue=3&rft.spage=752&rft.epage=762&rft.pages=752-762&rft.issn=1738-5733&rft_id=info:doi/10.1016/j.net.2020.07.039&rft_dat=%3Celsevier_webof%3ES1738573320308019%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1738573320308019&rft_doaj_id=oai_doaj_org_article_67acf87f3ae94ba98697e0226f6b4012&rfr_iscdi=true