Numerical simulation on LMR molten-core centralized sloshing benchmark experiment using multi-phase smoothed particle hydrodynamics
The Smoothed Particle Hydrodynamics is one of the most widely used mesh-free numerical method for thermo-fluid dynamics. Due to its Lagrangian nature and simplicity, it is recently gaining popularity in simulating complex physics with large deformations. In this study, the 3D single/two-phase numeri...
Gespeichert in:
Veröffentlicht in: | Nuclear engineering and technology 2021-03, Vol.53 (3), p.752-762 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 762 |
---|---|
container_issue | 3 |
container_start_page | 752 |
container_title | Nuclear engineering and technology |
container_volume | 53 |
creator | Jo, Young Beom Park, So-Hyun Park, Juryong Kim, Eung Soo |
description | The Smoothed Particle Hydrodynamics is one of the most widely used mesh-free numerical method for thermo-fluid dynamics. Due to its Lagrangian nature and simplicity, it is recently gaining popularity in simulating complex physics with large deformations. In this study, the 3D single/two-phase numerical simulations are performed on the Liquid Metal Reactor (LMR) centralized sloshing benchmark experiment using the SPH parallelized using a GPU. In order to capture multi-phase flows with a large density ratio more effectively, the original SPH density and continuity equations are re-formulated in terms of the normalized-density. Based upon this approach, maximum sloshing height and arrival time in various experimental cases are calculated by using both single-phase and multi-phase SPH framework and the results are compared with the benchmark results. Overall, the results of SPH simulations show excellent agreement with all the benchmark experiments both in qualitative and quantitative manners. According to the sensitivity study of the particle-size, the prediction accuracy is gradually increasing with decreasing the particle-size leading to a higher resolution. In addition, it is found that the multi-phase SPH model considering both liquid and air provides a better prediction on the experimental results and the reality. |
doi_str_mv | 10.1016/j.net.2020.07.039 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000631704600005CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1738573320308019</els_id><doaj_id>oai_doaj_org_article_67acf87f3ae94ba98697e0226f6b4012</doaj_id><sourcerecordid>S1738573320308019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-f74dd19a40cfe9471e656349f0f350e3b62daaaaea95920b2cda1927571769b13</originalsourceid><addsrcrecordid>eNqNkU-PFCEQxfugieuuH8Abd9Nt0XTDEE9m4p9NxjUxeiY0XewwdjcTYNTx6he3ZmeyRyMhgUD9Ho96VfWSQ8OBy9e7ZsHStNBCA6oBoZ9UV1yJVd0rIZ5Vz3PeAciuU3BV_bk7zJiCsxPLYT5MtoS4MJqbT1_YHKeCS-1iQuZwKclO4TeOLE8xb8NyzwZc3Ha26TvDX3uSmamIHfLpirRKqPdbm5HlOcayJXBvUwluQrY9jimOx8XOweWb6qm3U8YXl_W6-vb-3df1x3rz-cPt-u2mdh3IUnvVjSPXtgPnUXeKo-yl6LQHL3pAMch2tDTQ6l63MLRutFy3qldcST1wcV3dnnXHaHdmT3ZtOppog3k4iOneXPwZqazzK-WFpZcGq1dSK4S2lV4OHfCWtPhZy6WYc0L_qMfBnFIwO0MpmFMKBpShFIhZnZmfOESfXaDu4SMHlIngCjpJO-jXoTxksY6HpRD66v9Rqn5zrkbq5o-AyVyIMSR0hb4b_mHzL0dttjo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical simulation on LMR molten-core centralized sloshing benchmark experiment using multi-phase smoothed particle hydrodynamics</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Jo, Young Beom ; Park, So-Hyun ; Park, Juryong ; Kim, Eung Soo</creator><creatorcontrib>Jo, Young Beom ; Park, So-Hyun ; Park, Juryong ; Kim, Eung Soo</creatorcontrib><description>The Smoothed Particle Hydrodynamics is one of the most widely used mesh-free numerical method for thermo-fluid dynamics. Due to its Lagrangian nature and simplicity, it is recently gaining popularity in simulating complex physics with large deformations. In this study, the 3D single/two-phase numerical simulations are performed on the Liquid Metal Reactor (LMR) centralized sloshing benchmark experiment using the SPH parallelized using a GPU. In order to capture multi-phase flows with a large density ratio more effectively, the original SPH density and continuity equations are re-formulated in terms of the normalized-density. Based upon this approach, maximum sloshing height and arrival time in various experimental cases are calculated by using both single-phase and multi-phase SPH framework and the results are compared with the benchmark results. Overall, the results of SPH simulations show excellent agreement with all the benchmark experiments both in qualitative and quantitative manners. According to the sensitivity study of the particle-size, the prediction accuracy is gradually increasing with decreasing the particle-size leading to a higher resolution. In addition, it is found that the multi-phase SPH model considering both liquid and air provides a better prediction on the experimental results and the reality.</description><identifier>ISSN: 1738-5733</identifier><identifier>DOI: 10.1016/j.net.2020.07.039</identifier><language>eng</language><publisher>DAEJEON: Elsevier B.V</publisher><subject>Centralized sloshing ; Core disruptive accident ; Liquid metal reactor ; Multi-phase ; Normalized-density ; Nuclear Science & Technology ; Science & Technology ; Smoothed particle hydrodynamics ; Technology</subject><ispartof>Nuclear engineering and technology, 2021-03, Vol.53 (3), p.752-762</ispartof><rights>2020 Korean Nuclear Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000631704600005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c406t-f74dd19a40cfe9471e656349f0f350e3b62daaaaea95920b2cda1927571769b13</citedby><cites>FETCH-LOGICAL-c406t-f74dd19a40cfe9471e656349f0f350e3b62daaaaea95920b2cda1927571769b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Jo, Young Beom</creatorcontrib><creatorcontrib>Park, So-Hyun</creatorcontrib><creatorcontrib>Park, Juryong</creatorcontrib><creatorcontrib>Kim, Eung Soo</creatorcontrib><title>Numerical simulation on LMR molten-core centralized sloshing benchmark experiment using multi-phase smoothed particle hydrodynamics</title><title>Nuclear engineering and technology</title><addtitle>NUCL ENG TECHNOL</addtitle><description>The Smoothed Particle Hydrodynamics is one of the most widely used mesh-free numerical method for thermo-fluid dynamics. Due to its Lagrangian nature and simplicity, it is recently gaining popularity in simulating complex physics with large deformations. In this study, the 3D single/two-phase numerical simulations are performed on the Liquid Metal Reactor (LMR) centralized sloshing benchmark experiment using the SPH parallelized using a GPU. In order to capture multi-phase flows with a large density ratio more effectively, the original SPH density and continuity equations are re-formulated in terms of the normalized-density. Based upon this approach, maximum sloshing height and arrival time in various experimental cases are calculated by using both single-phase and multi-phase SPH framework and the results are compared with the benchmark results. Overall, the results of SPH simulations show excellent agreement with all the benchmark experiments both in qualitative and quantitative manners. According to the sensitivity study of the particle-size, the prediction accuracy is gradually increasing with decreasing the particle-size leading to a higher resolution. In addition, it is found that the multi-phase SPH model considering both liquid and air provides a better prediction on the experimental results and the reality.</description><subject>Centralized sloshing</subject><subject>Core disruptive accident</subject><subject>Liquid metal reactor</subject><subject>Multi-phase</subject><subject>Normalized-density</subject><subject>Nuclear Science & Technology</subject><subject>Science & Technology</subject><subject>Smoothed particle hydrodynamics</subject><subject>Technology</subject><issn>1738-5733</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU-PFCEQxfugieuuH8Abd9Nt0XTDEE9m4p9NxjUxeiY0XewwdjcTYNTx6he3ZmeyRyMhgUD9Ho96VfWSQ8OBy9e7ZsHStNBCA6oBoZ9UV1yJVd0rIZ5Vz3PeAciuU3BV_bk7zJiCsxPLYT5MtoS4MJqbT1_YHKeCS-1iQuZwKclO4TeOLE8xb8NyzwZc3Ha26TvDX3uSmamIHfLpirRKqPdbm5HlOcayJXBvUwluQrY9jimOx8XOweWb6qm3U8YXl_W6-vb-3df1x3rz-cPt-u2mdh3IUnvVjSPXtgPnUXeKo-yl6LQHL3pAMch2tDTQ6l63MLRutFy3qldcST1wcV3dnnXHaHdmT3ZtOppog3k4iOneXPwZqazzK-WFpZcGq1dSK4S2lV4OHfCWtPhZy6WYc0L_qMfBnFIwO0MpmFMKBpShFIhZnZmfOESfXaDu4SMHlIngCjpJO-jXoTxksY6HpRD66v9Rqn5zrkbq5o-AyVyIMSR0hb4b_mHzL0dttjo</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Jo, Young Beom</creator><creator>Park, So-Hyun</creator><creator>Park, Juryong</creator><creator>Kim, Eung Soo</creator><general>Elsevier B.V</general><general>Korean Nuclear Soc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202103</creationdate><title>Numerical simulation on LMR molten-core centralized sloshing benchmark experiment using multi-phase smoothed particle hydrodynamics</title><author>Jo, Young Beom ; Park, So-Hyun ; Park, Juryong ; Kim, Eung Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-f74dd19a40cfe9471e656349f0f350e3b62daaaaea95920b2cda1927571769b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Centralized sloshing</topic><topic>Core disruptive accident</topic><topic>Liquid metal reactor</topic><topic>Multi-phase</topic><topic>Normalized-density</topic><topic>Nuclear Science & Technology</topic><topic>Science & Technology</topic><topic>Smoothed particle hydrodynamics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Young Beom</creatorcontrib><creatorcontrib>Park, So-Hyun</creatorcontrib><creatorcontrib>Park, Juryong</creatorcontrib><creatorcontrib>Kim, Eung Soo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nuclear engineering and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Young Beom</au><au>Park, So-Hyun</au><au>Park, Juryong</au><au>Kim, Eung Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation on LMR molten-core centralized sloshing benchmark experiment using multi-phase smoothed particle hydrodynamics</atitle><jtitle>Nuclear engineering and technology</jtitle><stitle>NUCL ENG TECHNOL</stitle><date>2021-03</date><risdate>2021</risdate><volume>53</volume><issue>3</issue><spage>752</spage><epage>762</epage><pages>752-762</pages><issn>1738-5733</issn><abstract>The Smoothed Particle Hydrodynamics is one of the most widely used mesh-free numerical method for thermo-fluid dynamics. Due to its Lagrangian nature and simplicity, it is recently gaining popularity in simulating complex physics with large deformations. In this study, the 3D single/two-phase numerical simulations are performed on the Liquid Metal Reactor (LMR) centralized sloshing benchmark experiment using the SPH parallelized using a GPU. In order to capture multi-phase flows with a large density ratio more effectively, the original SPH density and continuity equations are re-formulated in terms of the normalized-density. Based upon this approach, maximum sloshing height and arrival time in various experimental cases are calculated by using both single-phase and multi-phase SPH framework and the results are compared with the benchmark results. Overall, the results of SPH simulations show excellent agreement with all the benchmark experiments both in qualitative and quantitative manners. According to the sensitivity study of the particle-size, the prediction accuracy is gradually increasing with decreasing the particle-size leading to a higher resolution. In addition, it is found that the multi-phase SPH model considering both liquid and air provides a better prediction on the experimental results and the reality.</abstract><cop>DAEJEON</cop><pub>Elsevier B.V</pub><doi>10.1016/j.net.2020.07.039</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1738-5733 |
ispartof | Nuclear engineering and technology, 2021-03, Vol.53 (3), p.752-762 |
issn | 1738-5733 |
language | eng |
recordid | cdi_webofscience_primary_000631704600005CitationCount |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | Centralized sloshing Core disruptive accident Liquid metal reactor Multi-phase Normalized-density Nuclear Science & Technology Science & Technology Smoothed particle hydrodynamics Technology |
title | Numerical simulation on LMR molten-core centralized sloshing benchmark experiment using multi-phase smoothed particle hydrodynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T04%3A49%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20on%20LMR%20molten-core%20centralized%20sloshing%20benchmark%20experiment%20using%20multi-phase%20smoothed%20particle%20hydrodynamics&rft.jtitle=Nuclear%20engineering%20and%20technology&rft.au=Jo,%20Young%20Beom&rft.date=2021-03&rft.volume=53&rft.issue=3&rft.spage=752&rft.epage=762&rft.pages=752-762&rft.issn=1738-5733&rft_id=info:doi/10.1016/j.net.2020.07.039&rft_dat=%3Celsevier_webof%3ES1738573320308019%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1738573320308019&rft_doaj_id=oai_doaj_org_article_67acf87f3ae94ba98697e0226f6b4012&rfr_iscdi=true |