CAS without SCF—Why to use CASCI and where to get the orbitals
The complete active space self-consistent field (CASSCF) method has seen broad adoption due to its ability to describe the electronic structure of both the ground and excited states of molecules over a broader swath of the potential energy surface than is possible with the simpler Hartree–Fock appro...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2021-03, Vol.154 (9), p.090902-090902, Article 090902 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 090902 |
---|---|
container_issue | 9 |
container_start_page | 090902 |
container_title | The Journal of chemical physics |
container_volume | 154 |
creator | Levine, Benjamin G. Durden, Andrew S. Esch, Michael P. Liang, Fangchun Shu, Yinan |
description | The complete active space self-consistent field (CASSCF) method has seen broad adoption due to its ability to describe the electronic structure of both the ground and excited states of molecules over a broader swath of the potential energy surface than is possible with the simpler Hartree–Fock approximation. However, it also has a reputation for being unwieldy, computationally costly, and un-black-box. Here, we discuss a class of alternatives, complete active space configuration interaction (CASCI) methods, paying particular attention to their application to electronic excited states. The goal of this Perspective is fourfold. First, we argue that CASCI is not merely an approximation to CASSCF, in that it can be designed to have important qualitative advantages over CASSCF. Second, we present several insights drawn from our experience experimenting with different schemes for computing orbitals to be employed in CASCI. Third, we argue that CASCI is well suited for application to nanomaterials. Finally, we reason that, with the rise in new low-scaling approaches for describing multireference systems, there is a greater need than ever to develop new methods for defining orbitals that provide an efficient and accurate description of both static correlation and electronic excitations in a limited active space. |
doi_str_mv | 10.1063/5.0042147 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000630523600001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497321821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-ff67faf1c9ed574e8be3959513e7666fbda0e8e6311b5f07d5870ed07b93311d3</originalsourceid><addsrcrecordid>eNqN0cFu1DAQBmALUdGlcOAFkAUXWpQyjmM7vlFFLVSqxKEgjlbijEmq3XiJHVa98RA8IU-CQ5YiIYE4jTT-PLL_IeQJg1MGkr8SpwBFzgp1j6wYlDpTUsN9sgLIWaYlyEPyMIQbAGAqLx6QQ85lKViZr8jr6uya7vrY-SnS6-ri-9dvH7tbGj2dAtJ0WF3SemjprsMR5_YnjDR2SP3Y9LFeh0fkwKWCj_f1iHy4OH9fvc2u3r25rM6uMlsUImbOSeVqx6zGVqgCywa5FlowjkpK6Zq2BixRcsYa4UC1olSALahG89Rr-RF5tsz1IfYm2D6i7awfBrTRMKW4ynVCLxa0Hf3nCUM0mz5YXK_rAf0UTF5ozUshiyLR53_QGz-NQ_rCrBTPUzwsqeNF2dGHMKIz27Hf1OOtYWDm7I0w--yTfbqfODUbbO_kr7ATeLmAHTbepS_gYPGOpe1IDiLnEuZFJV3-v67SLmLvh8pPQ0xXT5arc0w_-_989l_xFz_-hmbbOv4DADe3jQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497321821</pqid></control><display><type>article</type><title>CAS without SCF—Why to use CASCI and where to get the orbitals</title><source>AIP Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Levine, Benjamin G. ; Durden, Andrew S. ; Esch, Michael P. ; Liang, Fangchun ; Shu, Yinan</creator><creatorcontrib>Levine, Benjamin G. ; Durden, Andrew S. ; Esch, Michael P. ; Liang, Fangchun ; Shu, Yinan ; Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><description>The complete active space self-consistent field (CASSCF) method has seen broad adoption due to its ability to describe the electronic structure of both the ground and excited states of molecules over a broader swath of the potential energy surface than is possible with the simpler Hartree–Fock approximation. However, it also has a reputation for being unwieldy, computationally costly, and un-black-box. Here, we discuss a class of alternatives, complete active space configuration interaction (CASCI) methods, paying particular attention to their application to electronic excited states. The goal of this Perspective is fourfold. First, we argue that CASCI is not merely an approximation to CASSCF, in that it can be designed to have important qualitative advantages over CASSCF. Second, we present several insights drawn from our experience experimenting with different schemes for computing orbitals to be employed in CASCI. Third, we argue that CASCI is well suited for application to nanomaterials. Finally, we reason that, with the rise in new low-scaling approaches for describing multireference systems, there is a greater need than ever to develop new methods for defining orbitals that provide an efficient and accurate description of both static correlation and electronic excitations in a limited active space.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0042147</identifier><identifier>PMID: 33685182</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>MELVILLE: AIP Publishing</publisher><subject>Approximation ; Chemistry ; Chemistry, Physical ; Complete-active space self-consistent field ; Configuration interaction ; Electronic structure ; Excitation ; Excitation energies ; Hartree approximation ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Mathematical analysis ; Nanomaterials ; Orbitals ; Physical Sciences ; Physics ; Physics, Atomic, Molecular & Chemical ; Potential energy ; Science & Technology ; Self consistent fields</subject><ispartof>The Journal of chemical physics, 2021-03, Vol.154 (9), p.090902-090902, Article 090902</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>28</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000630523600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c445t-ff67faf1c9ed574e8be3959513e7666fbda0e8e6311b5f07d5870ed07b93311d3</citedby><cites>FETCH-LOGICAL-c445t-ff67faf1c9ed574e8be3959513e7666fbda0e8e6311b5f07d5870ed07b93311d3</cites><orcidid>0000-0001-9701-9784 ; 0000-0002-0356-0738 ; 0000-0003-2107-4378 ; 0000-0002-8371-0221 ; 0000-0002-5859-8231 ; 0000000197019784 ; 0000000203560738 ; 0000000283710221 ; 0000000321074378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0042147$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,315,782,786,796,887,4514,27931,27932,39265,76392</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33685182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1773729$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Levine, Benjamin G.</creatorcontrib><creatorcontrib>Durden, Andrew S.</creatorcontrib><creatorcontrib>Esch, Michael P.</creatorcontrib><creatorcontrib>Liang, Fangchun</creatorcontrib><creatorcontrib>Shu, Yinan</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><title>CAS without SCF—Why to use CASCI and where to get the orbitals</title><title>The Journal of chemical physics</title><addtitle>J CHEM PHYS</addtitle><addtitle>J Chem Phys</addtitle><description>The complete active space self-consistent field (CASSCF) method has seen broad adoption due to its ability to describe the electronic structure of both the ground and excited states of molecules over a broader swath of the potential energy surface than is possible with the simpler Hartree–Fock approximation. However, it also has a reputation for being unwieldy, computationally costly, and un-black-box. Here, we discuss a class of alternatives, complete active space configuration interaction (CASCI) methods, paying particular attention to their application to electronic excited states. The goal of this Perspective is fourfold. First, we argue that CASCI is not merely an approximation to CASSCF, in that it can be designed to have important qualitative advantages over CASSCF. Second, we present several insights drawn from our experience experimenting with different schemes for computing orbitals to be employed in CASCI. Third, we argue that CASCI is well suited for application to nanomaterials. Finally, we reason that, with the rise in new low-scaling approaches for describing multireference systems, there is a greater need than ever to develop new methods for defining orbitals that provide an efficient and accurate description of both static correlation and electronic excitations in a limited active space.</description><subject>Approximation</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Complete-active space self-consistent field</subject><subject>Configuration interaction</subject><subject>Electronic structure</subject><subject>Excitation</subject><subject>Excitation energies</subject><subject>Hartree approximation</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Mathematical analysis</subject><subject>Nanomaterials</subject><subject>Orbitals</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Atomic, Molecular & Chemical</subject><subject>Potential energy</subject><subject>Science & Technology</subject><subject>Self consistent fields</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqN0cFu1DAQBmALUdGlcOAFkAUXWpQyjmM7vlFFLVSqxKEgjlbijEmq3XiJHVa98RA8IU-CQ5YiIYE4jTT-PLL_IeQJg1MGkr8SpwBFzgp1j6wYlDpTUsN9sgLIWaYlyEPyMIQbAGAqLx6QQ85lKViZr8jr6uya7vrY-SnS6-ri-9dvH7tbGj2dAtJ0WF3SemjprsMR5_YnjDR2SP3Y9LFeh0fkwKWCj_f1iHy4OH9fvc2u3r25rM6uMlsUImbOSeVqx6zGVqgCywa5FlowjkpK6Zq2BixRcsYa4UC1olSALahG89Rr-RF5tsz1IfYm2D6i7awfBrTRMKW4ynVCLxa0Hf3nCUM0mz5YXK_rAf0UTF5ozUshiyLR53_QGz-NQ_rCrBTPUzwsqeNF2dGHMKIz27Hf1OOtYWDm7I0w--yTfbqfODUbbO_kr7ATeLmAHTbepS_gYPGOpe1IDiLnEuZFJV3-v67SLmLvh8pPQ0xXT5arc0w_-_989l_xFz_-hmbbOv4DADe3jQ</recordid><startdate>20210307</startdate><enddate>20210307</enddate><creator>Levine, Benjamin G.</creator><creator>Durden, Andrew S.</creator><creator>Esch, Michael P.</creator><creator>Liang, Fangchun</creator><creator>Shu, Yinan</creator><general>AIP Publishing</general><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9701-9784</orcidid><orcidid>https://orcid.org/0000-0002-0356-0738</orcidid><orcidid>https://orcid.org/0000-0003-2107-4378</orcidid><orcidid>https://orcid.org/0000-0002-8371-0221</orcidid><orcidid>https://orcid.org/0000-0002-5859-8231</orcidid><orcidid>https://orcid.org/0000000197019784</orcidid><orcidid>https://orcid.org/0000000203560738</orcidid><orcidid>https://orcid.org/0000000283710221</orcidid><orcidid>https://orcid.org/0000000321074378</orcidid></search><sort><creationdate>20210307</creationdate><title>CAS without SCF—Why to use CASCI and where to get the orbitals</title><author>Levine, Benjamin G. ; Durden, Andrew S. ; Esch, Michael P. ; Liang, Fangchun ; Shu, Yinan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-ff67faf1c9ed574e8be3959513e7666fbda0e8e6311b5f07d5870ed07b93311d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Complete-active space self-consistent field</topic><topic>Configuration interaction</topic><topic>Electronic structure</topic><topic>Excitation</topic><topic>Excitation energies</topic><topic>Hartree approximation</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Mathematical analysis</topic><topic>Nanomaterials</topic><topic>Orbitals</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Atomic, Molecular & Chemical</topic><topic>Potential energy</topic><topic>Science & Technology</topic><topic>Self consistent fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levine, Benjamin G.</creatorcontrib><creatorcontrib>Durden, Andrew S.</creatorcontrib><creatorcontrib>Esch, Michael P.</creatorcontrib><creatorcontrib>Liang, Fangchun</creatorcontrib><creatorcontrib>Shu, Yinan</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levine, Benjamin G.</au><au>Durden, Andrew S.</au><au>Esch, Michael P.</au><au>Liang, Fangchun</au><au>Shu, Yinan</au><aucorp>Michigan State Univ., East Lansing, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CAS without SCF—Why to use CASCI and where to get the orbitals</atitle><jtitle>The Journal of chemical physics</jtitle><stitle>J CHEM PHYS</stitle><addtitle>J Chem Phys</addtitle><date>2021-03-07</date><risdate>2021</risdate><volume>154</volume><issue>9</issue><spage>090902</spage><epage>090902</epage><pages>090902-090902</pages><artnum>090902</artnum><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The complete active space self-consistent field (CASSCF) method has seen broad adoption due to its ability to describe the electronic structure of both the ground and excited states of molecules over a broader swath of the potential energy surface than is possible with the simpler Hartree–Fock approximation. However, it also has a reputation for being unwieldy, computationally costly, and un-black-box. Here, we discuss a class of alternatives, complete active space configuration interaction (CASCI) methods, paying particular attention to their application to electronic excited states. The goal of this Perspective is fourfold. First, we argue that CASCI is not merely an approximation to CASSCF, in that it can be designed to have important qualitative advantages over CASSCF. Second, we present several insights drawn from our experience experimenting with different schemes for computing orbitals to be employed in CASCI. Third, we argue that CASCI is well suited for application to nanomaterials. Finally, we reason that, with the rise in new low-scaling approaches for describing multireference systems, there is a greater need than ever to develop new methods for defining orbitals that provide an efficient and accurate description of both static correlation and electronic excitations in a limited active space.</abstract><cop>MELVILLE</cop><pub>AIP Publishing</pub><pmid>33685182</pmid><doi>10.1063/5.0042147</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9701-9784</orcidid><orcidid>https://orcid.org/0000-0002-0356-0738</orcidid><orcidid>https://orcid.org/0000-0003-2107-4378</orcidid><orcidid>https://orcid.org/0000-0002-8371-0221</orcidid><orcidid>https://orcid.org/0000-0002-5859-8231</orcidid><orcidid>https://orcid.org/0000000197019784</orcidid><orcidid>https://orcid.org/0000000203560738</orcidid><orcidid>https://orcid.org/0000000283710221</orcidid><orcidid>https://orcid.org/0000000321074378</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2021-03, Vol.154 (9), p.090902-090902, Article 090902 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_webofscience_primary_000630523600001CitationCount |
source | AIP Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | Approximation Chemistry Chemistry, Physical Complete-active space self-consistent field Configuration interaction Electronic structure Excitation Excitation energies Hartree approximation INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Mathematical analysis Nanomaterials Orbitals Physical Sciences Physics Physics, Atomic, Molecular & Chemical Potential energy Science & Technology Self consistent fields |
title | CAS without SCF—Why to use CASCI and where to get the orbitals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T01%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CAS%20without%20SCF%E2%80%94Why%20to%20use%20CASCI%20and%20where%20to%20get%20the%20orbitals&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Levine,%20Benjamin%20G.&rft.aucorp=Michigan%20State%20Univ.,%20East%20Lansing,%20MI%20(United%20States)&rft.date=2021-03-07&rft.volume=154&rft.issue=9&rft.spage=090902&rft.epage=090902&rft.pages=090902-090902&rft.artnum=090902&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0042147&rft_dat=%3Cproquest_webof%3E2497321821%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497321821&rft_id=info:pmid/33685182&rfr_iscdi=true |