CAS without SCF—Why to use CASCI and where to get the orbitals

The complete active space self-consistent field (CASSCF) method has seen broad adoption due to its ability to describe the electronic structure of both the ground and excited states of molecules over a broader swath of the potential energy surface than is possible with the simpler Hartree–Fock appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2021-03, Vol.154 (9), p.090902-090902, Article 090902
Hauptverfasser: Levine, Benjamin G., Durden, Andrew S., Esch, Michael P., Liang, Fangchun, Shu, Yinan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 090902
container_issue 9
container_start_page 090902
container_title The Journal of chemical physics
container_volume 154
creator Levine, Benjamin G.
Durden, Andrew S.
Esch, Michael P.
Liang, Fangchun
Shu, Yinan
description The complete active space self-consistent field (CASSCF) method has seen broad adoption due to its ability to describe the electronic structure of both the ground and excited states of molecules over a broader swath of the potential energy surface than is possible with the simpler Hartree–Fock approximation. However, it also has a reputation for being unwieldy, computationally costly, and un-black-box. Here, we discuss a class of alternatives, complete active space configuration interaction (CASCI) methods, paying particular attention to their application to electronic excited states. The goal of this Perspective is fourfold. First, we argue that CASCI is not merely an approximation to CASSCF, in that it can be designed to have important qualitative advantages over CASSCF. Second, we present several insights drawn from our experience experimenting with different schemes for computing orbitals to be employed in CASCI. Third, we argue that CASCI is well suited for application to nanomaterials. Finally, we reason that, with the rise in new low-scaling approaches for describing multireference systems, there is a greater need than ever to develop new methods for defining orbitals that provide an efficient and accurate description of both static correlation and electronic excitations in a limited active space.
doi_str_mv 10.1063/5.0042147
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000630523600001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497321821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-ff67faf1c9ed574e8be3959513e7666fbda0e8e6311b5f07d5870ed07b93311d3</originalsourceid><addsrcrecordid>eNqN0cFu1DAQBmALUdGlcOAFkAUXWpQyjmM7vlFFLVSqxKEgjlbijEmq3XiJHVa98RA8IU-CQ5YiIYE4jTT-PLL_IeQJg1MGkr8SpwBFzgp1j6wYlDpTUsN9sgLIWaYlyEPyMIQbAGAqLx6QQ85lKViZr8jr6uya7vrY-SnS6-ri-9dvH7tbGj2dAtJ0WF3SemjprsMR5_YnjDR2SP3Y9LFeh0fkwKWCj_f1iHy4OH9fvc2u3r25rM6uMlsUImbOSeVqx6zGVqgCywa5FlowjkpK6Zq2BixRcsYa4UC1olSALahG89Rr-RF5tsz1IfYm2D6i7awfBrTRMKW4ynVCLxa0Hf3nCUM0mz5YXK_rAf0UTF5ozUshiyLR53_QGz-NQ_rCrBTPUzwsqeNF2dGHMKIz27Hf1OOtYWDm7I0w--yTfbqfODUbbO_kr7ATeLmAHTbepS_gYPGOpe1IDiLnEuZFJV3-v67SLmLvh8pPQ0xXT5arc0w_-_989l_xFz_-hmbbOv4DADe3jQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497321821</pqid></control><display><type>article</type><title>CAS without SCF—Why to use CASCI and where to get the orbitals</title><source>AIP Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Levine, Benjamin G. ; Durden, Andrew S. ; Esch, Michael P. ; Liang, Fangchun ; Shu, Yinan</creator><creatorcontrib>Levine, Benjamin G. ; Durden, Andrew S. ; Esch, Michael P. ; Liang, Fangchun ; Shu, Yinan ; Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><description>The complete active space self-consistent field (CASSCF) method has seen broad adoption due to its ability to describe the electronic structure of both the ground and excited states of molecules over a broader swath of the potential energy surface than is possible with the simpler Hartree–Fock approximation. However, it also has a reputation for being unwieldy, computationally costly, and un-black-box. Here, we discuss a class of alternatives, complete active space configuration interaction (CASCI) methods, paying particular attention to their application to electronic excited states. The goal of this Perspective is fourfold. First, we argue that CASCI is not merely an approximation to CASSCF, in that it can be designed to have important qualitative advantages over CASSCF. Second, we present several insights drawn from our experience experimenting with different schemes for computing orbitals to be employed in CASCI. Third, we argue that CASCI is well suited for application to nanomaterials. Finally, we reason that, with the rise in new low-scaling approaches for describing multireference systems, there is a greater need than ever to develop new methods for defining orbitals that provide an efficient and accurate description of both static correlation and electronic excitations in a limited active space.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0042147</identifier><identifier>PMID: 33685182</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>MELVILLE: AIP Publishing</publisher><subject>Approximation ; Chemistry ; Chemistry, Physical ; Complete-active space self-consistent field ; Configuration interaction ; Electronic structure ; Excitation ; Excitation energies ; Hartree approximation ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Mathematical analysis ; Nanomaterials ; Orbitals ; Physical Sciences ; Physics ; Physics, Atomic, Molecular &amp; Chemical ; Potential energy ; Science &amp; Technology ; Self consistent fields</subject><ispartof>The Journal of chemical physics, 2021-03, Vol.154 (9), p.090902-090902, Article 090902</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>28</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000630523600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c445t-ff67faf1c9ed574e8be3959513e7666fbda0e8e6311b5f07d5870ed07b93311d3</citedby><cites>FETCH-LOGICAL-c445t-ff67faf1c9ed574e8be3959513e7666fbda0e8e6311b5f07d5870ed07b93311d3</cites><orcidid>0000-0001-9701-9784 ; 0000-0002-0356-0738 ; 0000-0003-2107-4378 ; 0000-0002-8371-0221 ; 0000-0002-5859-8231 ; 0000000197019784 ; 0000000203560738 ; 0000000283710221 ; 0000000321074378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0042147$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,315,782,786,796,887,4514,27931,27932,39265,76392</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33685182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1773729$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Levine, Benjamin G.</creatorcontrib><creatorcontrib>Durden, Andrew S.</creatorcontrib><creatorcontrib>Esch, Michael P.</creatorcontrib><creatorcontrib>Liang, Fangchun</creatorcontrib><creatorcontrib>Shu, Yinan</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><title>CAS without SCF—Why to use CASCI and where to get the orbitals</title><title>The Journal of chemical physics</title><addtitle>J CHEM PHYS</addtitle><addtitle>J Chem Phys</addtitle><description>The complete active space self-consistent field (CASSCF) method has seen broad adoption due to its ability to describe the electronic structure of both the ground and excited states of molecules over a broader swath of the potential energy surface than is possible with the simpler Hartree–Fock approximation. However, it also has a reputation for being unwieldy, computationally costly, and un-black-box. Here, we discuss a class of alternatives, complete active space configuration interaction (CASCI) methods, paying particular attention to their application to electronic excited states. The goal of this Perspective is fourfold. First, we argue that CASCI is not merely an approximation to CASSCF, in that it can be designed to have important qualitative advantages over CASSCF. Second, we present several insights drawn from our experience experimenting with different schemes for computing orbitals to be employed in CASCI. Third, we argue that CASCI is well suited for application to nanomaterials. Finally, we reason that, with the rise in new low-scaling approaches for describing multireference systems, there is a greater need than ever to develop new methods for defining orbitals that provide an efficient and accurate description of both static correlation and electronic excitations in a limited active space.</description><subject>Approximation</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Complete-active space self-consistent field</subject><subject>Configuration interaction</subject><subject>Electronic structure</subject><subject>Excitation</subject><subject>Excitation energies</subject><subject>Hartree approximation</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Mathematical analysis</subject><subject>Nanomaterials</subject><subject>Orbitals</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Atomic, Molecular &amp; Chemical</subject><subject>Potential energy</subject><subject>Science &amp; Technology</subject><subject>Self consistent fields</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqN0cFu1DAQBmALUdGlcOAFkAUXWpQyjmM7vlFFLVSqxKEgjlbijEmq3XiJHVa98RA8IU-CQ5YiIYE4jTT-PLL_IeQJg1MGkr8SpwBFzgp1j6wYlDpTUsN9sgLIWaYlyEPyMIQbAGAqLx6QQ85lKViZr8jr6uya7vrY-SnS6-ri-9dvH7tbGj2dAtJ0WF3SemjprsMR5_YnjDR2SP3Y9LFeh0fkwKWCj_f1iHy4OH9fvc2u3r25rM6uMlsUImbOSeVqx6zGVqgCywa5FlowjkpK6Zq2BixRcsYa4UC1olSALahG89Rr-RF5tsz1IfYm2D6i7awfBrTRMKW4ynVCLxa0Hf3nCUM0mz5YXK_rAf0UTF5ozUshiyLR53_QGz-NQ_rCrBTPUzwsqeNF2dGHMKIz27Hf1OOtYWDm7I0w--yTfbqfODUbbO_kr7ATeLmAHTbepS_gYPGOpe1IDiLnEuZFJV3-v67SLmLvh8pPQ0xXT5arc0w_-_989l_xFz_-hmbbOv4DADe3jQ</recordid><startdate>20210307</startdate><enddate>20210307</enddate><creator>Levine, Benjamin G.</creator><creator>Durden, Andrew S.</creator><creator>Esch, Michael P.</creator><creator>Liang, Fangchun</creator><creator>Shu, Yinan</creator><general>AIP Publishing</general><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9701-9784</orcidid><orcidid>https://orcid.org/0000-0002-0356-0738</orcidid><orcidid>https://orcid.org/0000-0003-2107-4378</orcidid><orcidid>https://orcid.org/0000-0002-8371-0221</orcidid><orcidid>https://orcid.org/0000-0002-5859-8231</orcidid><orcidid>https://orcid.org/0000000197019784</orcidid><orcidid>https://orcid.org/0000000203560738</orcidid><orcidid>https://orcid.org/0000000283710221</orcidid><orcidid>https://orcid.org/0000000321074378</orcidid></search><sort><creationdate>20210307</creationdate><title>CAS without SCF—Why to use CASCI and where to get the orbitals</title><author>Levine, Benjamin G. ; Durden, Andrew S. ; Esch, Michael P. ; Liang, Fangchun ; Shu, Yinan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-ff67faf1c9ed574e8be3959513e7666fbda0e8e6311b5f07d5870ed07b93311d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Complete-active space self-consistent field</topic><topic>Configuration interaction</topic><topic>Electronic structure</topic><topic>Excitation</topic><topic>Excitation energies</topic><topic>Hartree approximation</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Mathematical analysis</topic><topic>Nanomaterials</topic><topic>Orbitals</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Atomic, Molecular &amp; Chemical</topic><topic>Potential energy</topic><topic>Science &amp; Technology</topic><topic>Self consistent fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levine, Benjamin G.</creatorcontrib><creatorcontrib>Durden, Andrew S.</creatorcontrib><creatorcontrib>Esch, Michael P.</creatorcontrib><creatorcontrib>Liang, Fangchun</creatorcontrib><creatorcontrib>Shu, Yinan</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levine, Benjamin G.</au><au>Durden, Andrew S.</au><au>Esch, Michael P.</au><au>Liang, Fangchun</au><au>Shu, Yinan</au><aucorp>Michigan State Univ., East Lansing, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CAS without SCF—Why to use CASCI and where to get the orbitals</atitle><jtitle>The Journal of chemical physics</jtitle><stitle>J CHEM PHYS</stitle><addtitle>J Chem Phys</addtitle><date>2021-03-07</date><risdate>2021</risdate><volume>154</volume><issue>9</issue><spage>090902</spage><epage>090902</epage><pages>090902-090902</pages><artnum>090902</artnum><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The complete active space self-consistent field (CASSCF) method has seen broad adoption due to its ability to describe the electronic structure of both the ground and excited states of molecules over a broader swath of the potential energy surface than is possible with the simpler Hartree–Fock approximation. However, it also has a reputation for being unwieldy, computationally costly, and un-black-box. Here, we discuss a class of alternatives, complete active space configuration interaction (CASCI) methods, paying particular attention to their application to electronic excited states. The goal of this Perspective is fourfold. First, we argue that CASCI is not merely an approximation to CASSCF, in that it can be designed to have important qualitative advantages over CASSCF. Second, we present several insights drawn from our experience experimenting with different schemes for computing orbitals to be employed in CASCI. Third, we argue that CASCI is well suited for application to nanomaterials. Finally, we reason that, with the rise in new low-scaling approaches for describing multireference systems, there is a greater need than ever to develop new methods for defining orbitals that provide an efficient and accurate description of both static correlation and electronic excitations in a limited active space.</abstract><cop>MELVILLE</cop><pub>AIP Publishing</pub><pmid>33685182</pmid><doi>10.1063/5.0042147</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9701-9784</orcidid><orcidid>https://orcid.org/0000-0002-0356-0738</orcidid><orcidid>https://orcid.org/0000-0003-2107-4378</orcidid><orcidid>https://orcid.org/0000-0002-8371-0221</orcidid><orcidid>https://orcid.org/0000-0002-5859-8231</orcidid><orcidid>https://orcid.org/0000000197019784</orcidid><orcidid>https://orcid.org/0000000203560738</orcidid><orcidid>https://orcid.org/0000000283710221</orcidid><orcidid>https://orcid.org/0000000321074378</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2021-03, Vol.154 (9), p.090902-090902, Article 090902
issn 0021-9606
1089-7690
language eng
recordid cdi_webofscience_primary_000630523600001CitationCount
source AIP Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Approximation
Chemistry
Chemistry, Physical
Complete-active space self-consistent field
Configuration interaction
Electronic structure
Excitation
Excitation energies
Hartree approximation
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Mathematical analysis
Nanomaterials
Orbitals
Physical Sciences
Physics
Physics, Atomic, Molecular & Chemical
Potential energy
Science & Technology
Self consistent fields
title CAS without SCF—Why to use CASCI and where to get the orbitals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T01%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CAS%20without%20SCF%E2%80%94Why%20to%20use%20CASCI%20and%20where%20to%20get%20the%20orbitals&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Levine,%20Benjamin%20G.&rft.aucorp=Michigan%20State%20Univ.,%20East%20Lansing,%20MI%20(United%20States)&rft.date=2021-03-07&rft.volume=154&rft.issue=9&rft.spage=090902&rft.epage=090902&rft.pages=090902-090902&rft.artnum=090902&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0042147&rft_dat=%3Cproquest_webof%3E2497321821%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497321821&rft_id=info:pmid/33685182&rfr_iscdi=true