Conductive and highly compressible MXene aerogels with ordered microstructures as high-capacity electrodes for Li-ion capacitors

Assembling two-dimensional (2D) materials into functional three-dimensional (3D) structures can enable their use in a wide variety of applications. For energy storage devices, 3D electrodes with high ionic and electronic transport properties and decent mechanical properties are expected to prompt th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials today advances 2021-03, Vol.9, p.100135, Article 100135
Hauptverfasser: Orangi, J., Tetik, H., Parandoush, P., Kayali, E., Lin, D., Beidaghi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 100135
container_title Materials today advances
container_volume 9
creator Orangi, J.
Tetik, H.
Parandoush, P.
Kayali, E.
Lin, D.
Beidaghi, M.
description Assembling two-dimensional (2D) materials into functional three-dimensional (3D) structures can enable their use in a wide variety of applications. For energy storage devices, 3D electrodes with high ionic and electronic transport properties and decent mechanical properties are expected to prompt the fabrication of the next generations of devices with high energy and power densities. Herein, we report a simple, efficient, and scalable process based on unidirectional freeze casting to fabricate ordered and porous 3D aerogels from 2D Ti3C2Tx MXene flakes. The fabricated aerogels show excellent mechanical, electrical, and electrochemical properties. Our studies show that the processing conditions significantly affect the properties of MXene aerogels. The electrical conductivity and mechanical properties of fabricated aerogels directly correlate with their structural features. The mechanical test results showed that MXene aerogels with ordered structures could withstand almost 50% of strain before recovering to their original shape and maintain their electrical conductivities during continuous compressive cycling. As electrode materials for lithium-ion capacitors, the fabricated aerogels delivered a significantly high specific capacity (~1210 mAh/g at 0.05 A/g), excellent rate capability (~200 mAh/g at 10 A/g), and outstanding cycling performance. We believe that the MXene aerogels with ordered structures have promising properties for a broad range of applications, including energy storage devices and strain sensors.
doi_str_mv 10.1016/j.mtadv.2021.100135
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000629456900013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2590049821000059</els_id><doaj_id>oai_doaj_org_article_4b9d740b828c4b5b805fb45a156ba9fd</doaj_id><sourcerecordid>S2590049821000059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-7c7727d7c169843eee09ff83faef914b3a0d406c5889f836acc901713406a3e3</originalsourceid><addsrcrecordid>eNqNkU2L2zAQhk1poct2f0EvuhenI1u2pUMPxfRjIaWXPfQm9DFKFBwrSEqW3PrTq8Rh6an0JDEzz4tGT1W9p7CiQPuPu9U-K3taNdDQUgHadq-qu6YTUAMT_PVf97fVQ0o7AGh4QVt2V_0ew2yPJvsTEjVbsvWb7XQmJuwPEVPyekLy4xfOpYsxbHBK5NnnLQnRYkRL9t7EkHIsEccCEJWuEbVRB2V8PhOc0OQYbOm5EMna1z7M5NYOMb2r3jg1JXy4nffV09cvT-P3ev3z2-P4eV0bRlmuBzMMzWAHQ3vBWYuIIJzjrVPoBGW6VWAZ9KbjXJRyr4wRQIeyI_Sqxfa-elxibVA7eYh-r-JZBuXltRDiRqqYvZlQMi3swEDzhhumO82hc5p1ina9VsLZktUuWZfVU0T3kkdBXpTInbwqkRclclFSqA8L9Yw6uGQ8zgZfyOKkbwTregGX8TLN_3969Fnl8q1jOM65oJ8WtMjCk8cob7j1sbgoC_t_PvQPSDK42w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Conductive and highly compressible MXene aerogels with ordered microstructures as high-capacity electrodes for Li-ion capacitors</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Orangi, J. ; Tetik, H. ; Parandoush, P. ; Kayali, E. ; Lin, D. ; Beidaghi, M.</creator><creatorcontrib>Orangi, J. ; Tetik, H. ; Parandoush, P. ; Kayali, E. ; Lin, D. ; Beidaghi, M.</creatorcontrib><description>Assembling two-dimensional (2D) materials into functional three-dimensional (3D) structures can enable their use in a wide variety of applications. For energy storage devices, 3D electrodes with high ionic and electronic transport properties and decent mechanical properties are expected to prompt the fabrication of the next generations of devices with high energy and power densities. Herein, we report a simple, efficient, and scalable process based on unidirectional freeze casting to fabricate ordered and porous 3D aerogels from 2D Ti3C2Tx MXene flakes. The fabricated aerogels show excellent mechanical, electrical, and electrochemical properties. Our studies show that the processing conditions significantly affect the properties of MXene aerogels. The electrical conductivity and mechanical properties of fabricated aerogels directly correlate with their structural features. The mechanical test results showed that MXene aerogels with ordered structures could withstand almost 50% of strain before recovering to their original shape and maintain their electrical conductivities during continuous compressive cycling. As electrode materials for lithium-ion capacitors, the fabricated aerogels delivered a significantly high specific capacity (~1210 mAh/g at 0.05 A/g), excellent rate capability (~200 mAh/g at 10 A/g), and outstanding cycling performance. We believe that the MXene aerogels with ordered structures have promising properties for a broad range of applications, including energy storage devices and strain sensors.</description><identifier>ISSN: 2590-0498</identifier><identifier>EISSN: 2590-0498</identifier><identifier>DOI: 10.1016/j.mtadv.2021.100135</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier Ltd</publisher><subject>2D MXenes ; Electrochemical energy storage ; Highly compressible materials ; Materials Science ; Materials Science, Multidisciplinary ; Science &amp; Technology ; Technology ; Unidirectional freeze casting ; Vertically aligned microstructure</subject><ispartof>Materials today advances, 2021-03, Vol.9, p.100135, Article 100135</ispartof><rights>2021 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>28</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000629456900013</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c414t-7c7727d7c169843eee09ff83faef914b3a0d406c5889f836acc901713406a3e3</citedby><cites>FETCH-LOGICAL-c414t-7c7727d7c169843eee09ff83faef914b3a0d406c5889f836acc901713406a3e3</cites><orcidid>0000-0003-3647-3822 ; 0000-0002-3150-9024 ; 0000-0002-8003-8986 ; 0000-0001-9443-2717 ; 0000-0002-4643-714X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,2104,2116,27931,27932,39265</link.rule.ids></links><search><creatorcontrib>Orangi, J.</creatorcontrib><creatorcontrib>Tetik, H.</creatorcontrib><creatorcontrib>Parandoush, P.</creatorcontrib><creatorcontrib>Kayali, E.</creatorcontrib><creatorcontrib>Lin, D.</creatorcontrib><creatorcontrib>Beidaghi, M.</creatorcontrib><title>Conductive and highly compressible MXene aerogels with ordered microstructures as high-capacity electrodes for Li-ion capacitors</title><title>Materials today advances</title><addtitle>MATER TODAY ADV</addtitle><description>Assembling two-dimensional (2D) materials into functional three-dimensional (3D) structures can enable their use in a wide variety of applications. For energy storage devices, 3D electrodes with high ionic and electronic transport properties and decent mechanical properties are expected to prompt the fabrication of the next generations of devices with high energy and power densities. Herein, we report a simple, efficient, and scalable process based on unidirectional freeze casting to fabricate ordered and porous 3D aerogels from 2D Ti3C2Tx MXene flakes. The fabricated aerogels show excellent mechanical, electrical, and electrochemical properties. Our studies show that the processing conditions significantly affect the properties of MXene aerogels. The electrical conductivity and mechanical properties of fabricated aerogels directly correlate with their structural features. The mechanical test results showed that MXene aerogels with ordered structures could withstand almost 50% of strain before recovering to their original shape and maintain their electrical conductivities during continuous compressive cycling. As electrode materials for lithium-ion capacitors, the fabricated aerogels delivered a significantly high specific capacity (~1210 mAh/g at 0.05 A/g), excellent rate capability (~200 mAh/g at 10 A/g), and outstanding cycling performance. We believe that the MXene aerogels with ordered structures have promising properties for a broad range of applications, including energy storage devices and strain sensors.</description><subject>2D MXenes</subject><subject>Electrochemical energy storage</subject><subject>Highly compressible materials</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>Unidirectional freeze casting</subject><subject>Vertically aligned microstructure</subject><issn>2590-0498</issn><issn>2590-0498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU2L2zAQhk1poct2f0EvuhenI1u2pUMPxfRjIaWXPfQm9DFKFBwrSEqW3PrTq8Rh6an0JDEzz4tGT1W9p7CiQPuPu9U-K3taNdDQUgHadq-qu6YTUAMT_PVf97fVQ0o7AGh4QVt2V_0ew2yPJvsTEjVbsvWb7XQmJuwPEVPyekLy4xfOpYsxbHBK5NnnLQnRYkRL9t7EkHIsEccCEJWuEbVRB2V8PhOc0OQYbOm5EMna1z7M5NYOMb2r3jg1JXy4nffV09cvT-P3ev3z2-P4eV0bRlmuBzMMzWAHQ3vBWYuIIJzjrVPoBGW6VWAZ9KbjXJRyr4wRQIeyI_Sqxfa-elxibVA7eYh-r-JZBuXltRDiRqqYvZlQMi3swEDzhhumO82hc5p1ina9VsLZktUuWZfVU0T3kkdBXpTInbwqkRclclFSqA8L9Yw6uGQ8zgZfyOKkbwTregGX8TLN_3969Fnl8q1jOM65oJ8WtMjCk8cob7j1sbgoC_t_PvQPSDK42w</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Orangi, J.</creator><creator>Tetik, H.</creator><creator>Parandoush, P.</creator><creator>Kayali, E.</creator><creator>Lin, D.</creator><creator>Beidaghi, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3647-3822</orcidid><orcidid>https://orcid.org/0000-0002-3150-9024</orcidid><orcidid>https://orcid.org/0000-0002-8003-8986</orcidid><orcidid>https://orcid.org/0000-0001-9443-2717</orcidid><orcidid>https://orcid.org/0000-0002-4643-714X</orcidid></search><sort><creationdate>202103</creationdate><title>Conductive and highly compressible MXene aerogels with ordered microstructures as high-capacity electrodes for Li-ion capacitors</title><author>Orangi, J. ; Tetik, H. ; Parandoush, P. ; Kayali, E. ; Lin, D. ; Beidaghi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-7c7727d7c169843eee09ff83faef914b3a0d406c5889f836acc901713406a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2D MXenes</topic><topic>Electrochemical energy storage</topic><topic>Highly compressible materials</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>Unidirectional freeze casting</topic><topic>Vertically aligned microstructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orangi, J.</creatorcontrib><creatorcontrib>Tetik, H.</creatorcontrib><creatorcontrib>Parandoush, P.</creatorcontrib><creatorcontrib>Kayali, E.</creatorcontrib><creatorcontrib>Lin, D.</creatorcontrib><creatorcontrib>Beidaghi, M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials today advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orangi, J.</au><au>Tetik, H.</au><au>Parandoush, P.</au><au>Kayali, E.</au><au>Lin, D.</au><au>Beidaghi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductive and highly compressible MXene aerogels with ordered microstructures as high-capacity electrodes for Li-ion capacitors</atitle><jtitle>Materials today advances</jtitle><stitle>MATER TODAY ADV</stitle><date>2021-03</date><risdate>2021</risdate><volume>9</volume><spage>100135</spage><pages>100135-</pages><artnum>100135</artnum><issn>2590-0498</issn><eissn>2590-0498</eissn><abstract>Assembling two-dimensional (2D) materials into functional three-dimensional (3D) structures can enable their use in a wide variety of applications. For energy storage devices, 3D electrodes with high ionic and electronic transport properties and decent mechanical properties are expected to prompt the fabrication of the next generations of devices with high energy and power densities. Herein, we report a simple, efficient, and scalable process based on unidirectional freeze casting to fabricate ordered and porous 3D aerogels from 2D Ti3C2Tx MXene flakes. The fabricated aerogels show excellent mechanical, electrical, and electrochemical properties. Our studies show that the processing conditions significantly affect the properties of MXene aerogels. The electrical conductivity and mechanical properties of fabricated aerogels directly correlate with their structural features. The mechanical test results showed that MXene aerogels with ordered structures could withstand almost 50% of strain before recovering to their original shape and maintain their electrical conductivities during continuous compressive cycling. As electrode materials for lithium-ion capacitors, the fabricated aerogels delivered a significantly high specific capacity (~1210 mAh/g at 0.05 A/g), excellent rate capability (~200 mAh/g at 10 A/g), and outstanding cycling performance. We believe that the MXene aerogels with ordered structures have promising properties for a broad range of applications, including energy storage devices and strain sensors.</abstract><cop>AMSTERDAM</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.mtadv.2021.100135</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3647-3822</orcidid><orcidid>https://orcid.org/0000-0002-3150-9024</orcidid><orcidid>https://orcid.org/0000-0002-8003-8986</orcidid><orcidid>https://orcid.org/0000-0001-9443-2717</orcidid><orcidid>https://orcid.org/0000-0002-4643-714X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2590-0498
ispartof Materials today advances, 2021-03, Vol.9, p.100135, Article 100135
issn 2590-0498
2590-0498
language eng
recordid cdi_webofscience_primary_000629456900013
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects 2D MXenes
Electrochemical energy storage
Highly compressible materials
Materials Science
Materials Science, Multidisciplinary
Science & Technology
Technology
Unidirectional freeze casting
Vertically aligned microstructure
title Conductive and highly compressible MXene aerogels with ordered microstructures as high-capacity electrodes for Li-ion capacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T16%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductive%20and%20highly%20compressible%20MXene%20aerogels%20with%20ordered%20microstructures%20as%20high-capacity%20electrodes%20for%20Li-ion%20capacitors&rft.jtitle=Materials%20today%20advances&rft.au=Orangi,%20J.&rft.date=2021-03&rft.volume=9&rft.spage=100135&rft.pages=100135-&rft.artnum=100135&rft.issn=2590-0498&rft.eissn=2590-0498&rft_id=info:doi/10.1016/j.mtadv.2021.100135&rft_dat=%3Celsevier_webof%3ES2590049821000059%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S2590049821000059&rft_doaj_id=oai_doaj_org_article_4b9d740b828c4b5b805fb45a156ba9fd&rfr_iscdi=true