Conductive and highly compressible MXene aerogels with ordered microstructures as high-capacity electrodes for Li-ion capacitors
Assembling two-dimensional (2D) materials into functional three-dimensional (3D) structures can enable their use in a wide variety of applications. For energy storage devices, 3D electrodes with high ionic and electronic transport properties and decent mechanical properties are expected to prompt th...
Gespeichert in:
Veröffentlicht in: | Materials today advances 2021-03, Vol.9, p.100135, Article 100135 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 100135 |
container_title | Materials today advances |
container_volume | 9 |
creator | Orangi, J. Tetik, H. Parandoush, P. Kayali, E. Lin, D. Beidaghi, M. |
description | Assembling two-dimensional (2D) materials into functional three-dimensional (3D) structures can enable their use in a wide variety of applications. For energy storage devices, 3D electrodes with high ionic and electronic transport properties and decent mechanical properties are expected to prompt the fabrication of the next generations of devices with high energy and power densities. Herein, we report a simple, efficient, and scalable process based on unidirectional freeze casting to fabricate ordered and porous 3D aerogels from 2D Ti3C2Tx MXene flakes. The fabricated aerogels show excellent mechanical, electrical, and electrochemical properties. Our studies show that the processing conditions significantly affect the properties of MXene aerogels. The electrical conductivity and mechanical properties of fabricated aerogels directly correlate with their structural features. The mechanical test results showed that MXene aerogels with ordered structures could withstand almost 50% of strain before recovering to their original shape and maintain their electrical conductivities during continuous compressive cycling. As electrode materials for lithium-ion capacitors, the fabricated aerogels delivered a significantly high specific capacity (~1210 mAh/g at 0.05 A/g), excellent rate capability (~200 mAh/g at 10 A/g), and outstanding cycling performance. We believe that the MXene aerogels with ordered structures have promising properties for a broad range of applications, including energy storage devices and strain sensors. |
doi_str_mv | 10.1016/j.mtadv.2021.100135 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000629456900013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2590049821000059</els_id><doaj_id>oai_doaj_org_article_4b9d740b828c4b5b805fb45a156ba9fd</doaj_id><sourcerecordid>S2590049821000059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-7c7727d7c169843eee09ff83faef914b3a0d406c5889f836acc901713406a3e3</originalsourceid><addsrcrecordid>eNqNkU2L2zAQhk1poct2f0EvuhenI1u2pUMPxfRjIaWXPfQm9DFKFBwrSEqW3PrTq8Rh6an0JDEzz4tGT1W9p7CiQPuPu9U-K3taNdDQUgHadq-qu6YTUAMT_PVf97fVQ0o7AGh4QVt2V_0ew2yPJvsTEjVbsvWb7XQmJuwPEVPyekLy4xfOpYsxbHBK5NnnLQnRYkRL9t7EkHIsEccCEJWuEbVRB2V8PhOc0OQYbOm5EMna1z7M5NYOMb2r3jg1JXy4nffV09cvT-P3ev3z2-P4eV0bRlmuBzMMzWAHQ3vBWYuIIJzjrVPoBGW6VWAZ9KbjXJRyr4wRQIeyI_Sqxfa-elxibVA7eYh-r-JZBuXltRDiRqqYvZlQMi3swEDzhhumO82hc5p1ina9VsLZktUuWZfVU0T3kkdBXpTInbwqkRclclFSqA8L9Yw6uGQ8zgZfyOKkbwTregGX8TLN_3969Fnl8q1jOM65oJ8WtMjCk8cob7j1sbgoC_t_PvQPSDK42w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Conductive and highly compressible MXene aerogels with ordered microstructures as high-capacity electrodes for Li-ion capacitors</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Orangi, J. ; Tetik, H. ; Parandoush, P. ; Kayali, E. ; Lin, D. ; Beidaghi, M.</creator><creatorcontrib>Orangi, J. ; Tetik, H. ; Parandoush, P. ; Kayali, E. ; Lin, D. ; Beidaghi, M.</creatorcontrib><description>Assembling two-dimensional (2D) materials into functional three-dimensional (3D) structures can enable their use in a wide variety of applications. For energy storage devices, 3D electrodes with high ionic and electronic transport properties and decent mechanical properties are expected to prompt the fabrication of the next generations of devices with high energy and power densities. Herein, we report a simple, efficient, and scalable process based on unidirectional freeze casting to fabricate ordered and porous 3D aerogels from 2D Ti3C2Tx MXene flakes. The fabricated aerogels show excellent mechanical, electrical, and electrochemical properties. Our studies show that the processing conditions significantly affect the properties of MXene aerogels. The electrical conductivity and mechanical properties of fabricated aerogels directly correlate with their structural features. The mechanical test results showed that MXene aerogels with ordered structures could withstand almost 50% of strain before recovering to their original shape and maintain their electrical conductivities during continuous compressive cycling. As electrode materials for lithium-ion capacitors, the fabricated aerogels delivered a significantly high specific capacity (~1210 mAh/g at 0.05 A/g), excellent rate capability (~200 mAh/g at 10 A/g), and outstanding cycling performance. We believe that the MXene aerogels with ordered structures have promising properties for a broad range of applications, including energy storage devices and strain sensors.</description><identifier>ISSN: 2590-0498</identifier><identifier>EISSN: 2590-0498</identifier><identifier>DOI: 10.1016/j.mtadv.2021.100135</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier Ltd</publisher><subject>2D MXenes ; Electrochemical energy storage ; Highly compressible materials ; Materials Science ; Materials Science, Multidisciplinary ; Science & Technology ; Technology ; Unidirectional freeze casting ; Vertically aligned microstructure</subject><ispartof>Materials today advances, 2021-03, Vol.9, p.100135, Article 100135</ispartof><rights>2021 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>28</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000629456900013</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c414t-7c7727d7c169843eee09ff83faef914b3a0d406c5889f836acc901713406a3e3</citedby><cites>FETCH-LOGICAL-c414t-7c7727d7c169843eee09ff83faef914b3a0d406c5889f836acc901713406a3e3</cites><orcidid>0000-0003-3647-3822 ; 0000-0002-3150-9024 ; 0000-0002-8003-8986 ; 0000-0001-9443-2717 ; 0000-0002-4643-714X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,2104,2116,27931,27932,39265</link.rule.ids></links><search><creatorcontrib>Orangi, J.</creatorcontrib><creatorcontrib>Tetik, H.</creatorcontrib><creatorcontrib>Parandoush, P.</creatorcontrib><creatorcontrib>Kayali, E.</creatorcontrib><creatorcontrib>Lin, D.</creatorcontrib><creatorcontrib>Beidaghi, M.</creatorcontrib><title>Conductive and highly compressible MXene aerogels with ordered microstructures as high-capacity electrodes for Li-ion capacitors</title><title>Materials today advances</title><addtitle>MATER TODAY ADV</addtitle><description>Assembling two-dimensional (2D) materials into functional three-dimensional (3D) structures can enable their use in a wide variety of applications. For energy storage devices, 3D electrodes with high ionic and electronic transport properties and decent mechanical properties are expected to prompt the fabrication of the next generations of devices with high energy and power densities. Herein, we report a simple, efficient, and scalable process based on unidirectional freeze casting to fabricate ordered and porous 3D aerogels from 2D Ti3C2Tx MXene flakes. The fabricated aerogels show excellent mechanical, electrical, and electrochemical properties. Our studies show that the processing conditions significantly affect the properties of MXene aerogels. The electrical conductivity and mechanical properties of fabricated aerogels directly correlate with their structural features. The mechanical test results showed that MXene aerogels with ordered structures could withstand almost 50% of strain before recovering to their original shape and maintain their electrical conductivities during continuous compressive cycling. As electrode materials for lithium-ion capacitors, the fabricated aerogels delivered a significantly high specific capacity (~1210 mAh/g at 0.05 A/g), excellent rate capability (~200 mAh/g at 10 A/g), and outstanding cycling performance. We believe that the MXene aerogels with ordered structures have promising properties for a broad range of applications, including energy storage devices and strain sensors.</description><subject>2D MXenes</subject><subject>Electrochemical energy storage</subject><subject>Highly compressible materials</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Science & Technology</subject><subject>Technology</subject><subject>Unidirectional freeze casting</subject><subject>Vertically aligned microstructure</subject><issn>2590-0498</issn><issn>2590-0498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU2L2zAQhk1poct2f0EvuhenI1u2pUMPxfRjIaWXPfQm9DFKFBwrSEqW3PrTq8Rh6an0JDEzz4tGT1W9p7CiQPuPu9U-K3taNdDQUgHadq-qu6YTUAMT_PVf97fVQ0o7AGh4QVt2V_0ew2yPJvsTEjVbsvWb7XQmJuwPEVPyekLy4xfOpYsxbHBK5NnnLQnRYkRL9t7EkHIsEccCEJWuEbVRB2V8PhOc0OQYbOm5EMna1z7M5NYOMb2r3jg1JXy4nffV09cvT-P3ev3z2-P4eV0bRlmuBzMMzWAHQ3vBWYuIIJzjrVPoBGW6VWAZ9KbjXJRyr4wRQIeyI_Sqxfa-elxibVA7eYh-r-JZBuXltRDiRqqYvZlQMi3swEDzhhumO82hc5p1ina9VsLZktUuWZfVU0T3kkdBXpTInbwqkRclclFSqA8L9Yw6uGQ8zgZfyOKkbwTregGX8TLN_3969Fnl8q1jOM65oJ8WtMjCk8cob7j1sbgoC_t_PvQPSDK42w</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Orangi, J.</creator><creator>Tetik, H.</creator><creator>Parandoush, P.</creator><creator>Kayali, E.</creator><creator>Lin, D.</creator><creator>Beidaghi, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3647-3822</orcidid><orcidid>https://orcid.org/0000-0002-3150-9024</orcidid><orcidid>https://orcid.org/0000-0002-8003-8986</orcidid><orcidid>https://orcid.org/0000-0001-9443-2717</orcidid><orcidid>https://orcid.org/0000-0002-4643-714X</orcidid></search><sort><creationdate>202103</creationdate><title>Conductive and highly compressible MXene aerogels with ordered microstructures as high-capacity electrodes for Li-ion capacitors</title><author>Orangi, J. ; Tetik, H. ; Parandoush, P. ; Kayali, E. ; Lin, D. ; Beidaghi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-7c7727d7c169843eee09ff83faef914b3a0d406c5889f836acc901713406a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2D MXenes</topic><topic>Electrochemical energy storage</topic><topic>Highly compressible materials</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Science & Technology</topic><topic>Technology</topic><topic>Unidirectional freeze casting</topic><topic>Vertically aligned microstructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orangi, J.</creatorcontrib><creatorcontrib>Tetik, H.</creatorcontrib><creatorcontrib>Parandoush, P.</creatorcontrib><creatorcontrib>Kayali, E.</creatorcontrib><creatorcontrib>Lin, D.</creatorcontrib><creatorcontrib>Beidaghi, M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials today advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orangi, J.</au><au>Tetik, H.</au><au>Parandoush, P.</au><au>Kayali, E.</au><au>Lin, D.</au><au>Beidaghi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductive and highly compressible MXene aerogels with ordered microstructures as high-capacity electrodes for Li-ion capacitors</atitle><jtitle>Materials today advances</jtitle><stitle>MATER TODAY ADV</stitle><date>2021-03</date><risdate>2021</risdate><volume>9</volume><spage>100135</spage><pages>100135-</pages><artnum>100135</artnum><issn>2590-0498</issn><eissn>2590-0498</eissn><abstract>Assembling two-dimensional (2D) materials into functional three-dimensional (3D) structures can enable their use in a wide variety of applications. For energy storage devices, 3D electrodes with high ionic and electronic transport properties and decent mechanical properties are expected to prompt the fabrication of the next generations of devices with high energy and power densities. Herein, we report a simple, efficient, and scalable process based on unidirectional freeze casting to fabricate ordered and porous 3D aerogels from 2D Ti3C2Tx MXene flakes. The fabricated aerogels show excellent mechanical, electrical, and electrochemical properties. Our studies show that the processing conditions significantly affect the properties of MXene aerogels. The electrical conductivity and mechanical properties of fabricated aerogels directly correlate with their structural features. The mechanical test results showed that MXene aerogels with ordered structures could withstand almost 50% of strain before recovering to their original shape and maintain their electrical conductivities during continuous compressive cycling. As electrode materials for lithium-ion capacitors, the fabricated aerogels delivered a significantly high specific capacity (~1210 mAh/g at 0.05 A/g), excellent rate capability (~200 mAh/g at 10 A/g), and outstanding cycling performance. We believe that the MXene aerogels with ordered structures have promising properties for a broad range of applications, including energy storage devices and strain sensors.</abstract><cop>AMSTERDAM</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.mtadv.2021.100135</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3647-3822</orcidid><orcidid>https://orcid.org/0000-0002-3150-9024</orcidid><orcidid>https://orcid.org/0000-0002-8003-8986</orcidid><orcidid>https://orcid.org/0000-0001-9443-2717</orcidid><orcidid>https://orcid.org/0000-0002-4643-714X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2590-0498 |
ispartof | Materials today advances, 2021-03, Vol.9, p.100135, Article 100135 |
issn | 2590-0498 2590-0498 |
language | eng |
recordid | cdi_webofscience_primary_000629456900013 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | 2D MXenes Electrochemical energy storage Highly compressible materials Materials Science Materials Science, Multidisciplinary Science & Technology Technology Unidirectional freeze casting Vertically aligned microstructure |
title | Conductive and highly compressible MXene aerogels with ordered microstructures as high-capacity electrodes for Li-ion capacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T16%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductive%20and%20highly%20compressible%20MXene%20aerogels%20with%20ordered%20microstructures%20as%20high-capacity%20electrodes%20for%20Li-ion%20capacitors&rft.jtitle=Materials%20today%20advances&rft.au=Orangi,%20J.&rft.date=2021-03&rft.volume=9&rft.spage=100135&rft.pages=100135-&rft.artnum=100135&rft.issn=2590-0498&rft.eissn=2590-0498&rft_id=info:doi/10.1016/j.mtadv.2021.100135&rft_dat=%3Celsevier_webof%3ES2590049821000059%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S2590049821000059&rft_doaj_id=oai_doaj_org_article_4b9d740b828c4b5b805fb45a156ba9fd&rfr_iscdi=true |