Development of an In Silico Prediction Model for P‑glycoprotein Efflux Potential in Brain Capillary Endothelial Cells toward the Prediction of Brain Penetration

Developing in silico models to predict the brain penetration of drugs remains a challenge owing to the intricate involvement of multiple transport systems in the blood brain barrier, and the necessity to consider a combination of multiple pharmacokinetic parameters. P-glycoprotein (P-gp) is one of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2021-03, Vol.64 (5), p.2725-2738
Hauptverfasser: Watanabe, Reiko, Esaki, Tsuyoshi, Ohashi, Rikiya, Kuroda, Masataka, Kawashima, Hitoshi, Komura, Hiroshi, Natsume-Kitatani, Yayoi, Mizuguchi, Kenji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing in silico models to predict the brain penetration of drugs remains a challenge owing to the intricate involvement of multiple transport systems in the blood brain barrier, and the necessity to consider a combination of multiple pharmacokinetic parameters. P-glycoprotein (P-gp) is one of the most important transporters affecting the brain penetration of drugs. Here, we developed an in silico prediction model for P-gp efflux potential in brain capillary endothelial cells (BCEC). Using the representative values of P-gp net efflux ratio in BCEC, we proposed a novel prediction system for brain-to-plasma concentration ratio (K p,brain) and unbound brain-to-plasma concentration ratio (K p,uu,brain) of P-gp substrates. We validated the proposed prediction system using newly acquired experimental brain penetration data of 28 P-gp substrates. Our system improved the predictive accuracy of brain penetration of drugs using only chemical structure information compared with that of previous studies.
ISSN:0022-2623
1520-4804
DOI:10.1021/acs.jmedchem.0c02011