Consistent ultra-long DNA sequencing with automated slow pipetting
BackgroundOxford Nanopore Technologies' instruments can sequence reads of great length. Long reads improve sequence assemblies by unambiguously spanning repetitive elements of the genome. Sequencing reads of significant length requires the preservation of long DNA template molecules through lib...
Gespeichert in:
Veröffentlicht in: | BMC genomics 2021-03, Vol.22 (1), p.182-12, Article 182 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 1 |
container_start_page | 182 |
container_title | BMC genomics |
container_volume | 22 |
creator | Prall, Trent M. Neumann, Emma K. Karl, Julie A. Shortreed, Cecilia G. Baker, David A. Bussan, Hailey E. Wiseman, Roger W. O'Connor, David H. |
description | BackgroundOxford Nanopore Technologies' instruments can sequence reads of great length. Long reads improve sequence assemblies by unambiguously spanning repetitive elements of the genome. Sequencing reads of significant length requires the preservation of long DNA template molecules through library preparation by pipetting reagents as slowly as possible to minimize shearing. This process is time-consuming and inconsistent at preserving read length as even small changes in volumetric flow rate can result in template shearing.ResultsWe have designed SNAILS (Slow Nucleic Acid Instrument for Long Sequences), a 3D-printable instrument that automates slow pipetting of reagents used in long read library preparation for Oxford Nanopore sequencing. Across six sequencing libraries, SNAILS preserved more reads exceeding 100 kilobases in length and increased its libraries' average read length over manual slow pipetting.ConclusionsSNAILS is a low-cost, easily deployable solution for improving sequencing projects that require reads of significant length. By automating the slow pipetting of library preparation reagents, SNAILS increases the consistency and throughput of long read Nanopore sequencing. |
doi_str_mv | 10.1186/s12864-021-07500-w |
format | Article |
fullrecord | <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_webofscience_primary_000628995700006CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A655212802</galeid><doaj_id>oai_doaj_org_article_7abaa99c2c9742b3894e3dd25ba0d864</doaj_id><sourcerecordid>A655212802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-bb77239835d8dc99879c8490724c00fcbf58605a09d2475304b24c2ce773db803</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEoqXwB1igSKwQSrm249jeIA3Da6QKJB5ry7GdqUeZeBo7BP49t50ydCQWyIvYvt85yr0-RfGUwDkhsnmVCJVNXQElFQgOUM33ilNSC1JR0tT37-xPikcpbQCIkJQ_LE4YE4QoBqfFm2UcUkjZD7mc-jyaqo_Dunz7aVEmfzX5wQY8ziFflmbKcWuyd2Xq41zuws7njNXHxYPO9Mk_uf2eFd_fv_u2_FhdfP6wWi4uKsuVyFXbCkGZkow76axSUigrawWC1hags23HZQPcgHK0FpxB3WKFWi8Ec60Edlas9r4umo3ejWFrxl86mqBvLuK41mbMwfZeC9MaoxSqlahpy6SqPXOO8taAw5mh1-u9125qt95ZbH80_ZHpcWUIl3odf2ihOOOcocHzW4Mx4phS1ps4jQP2rykHik3VUvyl1gb_KgxdRDO7DcnqRcM5xQcEitT5Pyhczm-DjYPvAt4fCV4cCZDJ_mdemyklvfr65Zile9aOMaXRd4cmCejrGOl9jDTGSN_ESM8oenZ3PAfJn9wgIPfA7NvYJRswKP6AAUBDpVJcwPV2GbLJIQ7LOA0ZpS__X8p-A3SS4S4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502724487</pqid></control><display><type>article</type><title>Consistent ultra-long DNA sequencing with automated slow pipetting</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerNature Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Prall, Trent M. ; Neumann, Emma K. ; Karl, Julie A. ; Shortreed, Cecilia G. ; Baker, David A. ; Bussan, Hailey E. ; Wiseman, Roger W. ; O'Connor, David H.</creator><creatorcontrib>Prall, Trent M. ; Neumann, Emma K. ; Karl, Julie A. ; Shortreed, Cecilia G. ; Baker, David A. ; Bussan, Hailey E. ; Wiseman, Roger W. ; O'Connor, David H.</creatorcontrib><description>BackgroundOxford Nanopore Technologies' instruments can sequence reads of great length. Long reads improve sequence assemblies by unambiguously spanning repetitive elements of the genome. Sequencing reads of significant length requires the preservation of long DNA template molecules through library preparation by pipetting reagents as slowly as possible to minimize shearing. This process is time-consuming and inconsistent at preserving read length as even small changes in volumetric flow rate can result in template shearing.ResultsWe have designed SNAILS (Slow Nucleic Acid Instrument for Long Sequences), a 3D-printable instrument that automates slow pipetting of reagents used in long read library preparation for Oxford Nanopore sequencing. Across six sequencing libraries, SNAILS preserved more reads exceeding 100 kilobases in length and increased its libraries' average read length over manual slow pipetting.ConclusionsSNAILS is a low-cost, easily deployable solution for improving sequencing projects that require reads of significant length. By automating the slow pipetting of library preparation reagents, SNAILS increases the consistency and throughput of long read Nanopore sequencing.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-021-07500-w</identifier><identifier>PMID: 33711930</identifier><language>eng</language><publisher>LONDON: Springer Nature</publisher><subject>Automation ; Biotechnology & Applied Microbiology ; Chromosomes ; Deoxyribonucleic acid ; DNA ; DNA sequencing ; Equipment and supplies ; Flow rates ; Flow velocity ; Genetics & Heredity ; Genomes ; Genomics ; GridION ; High-Throughput Nucleotide Sequencing ; Innovations ; Libraries ; Life Sciences & Biomedicine ; Long read sequencing ; Methodology ; Methods ; MinION ; Molecular weight ; Mutation ; Nanopore Sequencing ; Nanopores ; Nucleic acids ; Nucleotide sequence ; Nucleotide sequencing ; Oxford Nanopore technologies ; Porosity ; Protocol ; Reagents ; Repetitive Sequences, Nucleic Acid ; Retention ; Science & Technology ; Sequence Analysis, DNA ; Shearing ; Snails ; Three dimensional printing ; Ultra-long</subject><ispartof>BMC genomics, 2021-03, Vol.22 (1), p.182-12, Article 182</ispartof><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000628995700006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c597t-bb77239835d8dc99879c8490724c00fcbf58605a09d2475304b24c2ce773db803</citedby><cites>FETCH-LOGICAL-c597t-bb77239835d8dc99879c8490724c00fcbf58605a09d2475304b24c2ce773db803</cites><orcidid>0000-0002-4447-4721 ; 0000-0003-2453-8297 ; 0000-0002-6811-8238 ; 0000-0003-0654-5952 ; 0000-0003-0635-4152 ; 0000-0002-0961-7109 ; 0000-0002-7682-7085 ; 0000-0003-2139-470X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7953553/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7953553/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33711930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prall, Trent M.</creatorcontrib><creatorcontrib>Neumann, Emma K.</creatorcontrib><creatorcontrib>Karl, Julie A.</creatorcontrib><creatorcontrib>Shortreed, Cecilia G.</creatorcontrib><creatorcontrib>Baker, David A.</creatorcontrib><creatorcontrib>Bussan, Hailey E.</creatorcontrib><creatorcontrib>Wiseman, Roger W.</creatorcontrib><creatorcontrib>O'Connor, David H.</creatorcontrib><title>Consistent ultra-long DNA sequencing with automated slow pipetting</title><title>BMC genomics</title><addtitle>BMC GENOMICS</addtitle><addtitle>BMC Genomics</addtitle><description>BackgroundOxford Nanopore Technologies' instruments can sequence reads of great length. Long reads improve sequence assemblies by unambiguously spanning repetitive elements of the genome. Sequencing reads of significant length requires the preservation of long DNA template molecules through library preparation by pipetting reagents as slowly as possible to minimize shearing. This process is time-consuming and inconsistent at preserving read length as even small changes in volumetric flow rate can result in template shearing.ResultsWe have designed SNAILS (Slow Nucleic Acid Instrument for Long Sequences), a 3D-printable instrument that automates slow pipetting of reagents used in long read library preparation for Oxford Nanopore sequencing. Across six sequencing libraries, SNAILS preserved more reads exceeding 100 kilobases in length and increased its libraries' average read length over manual slow pipetting.ConclusionsSNAILS is a low-cost, easily deployable solution for improving sequencing projects that require reads of significant length. By automating the slow pipetting of library preparation reagents, SNAILS increases the consistency and throughput of long read Nanopore sequencing.</description><subject>Automation</subject><subject>Biotechnology & Applied Microbiology</subject><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Equipment and supplies</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Genetics & Heredity</subject><subject>Genomes</subject><subject>Genomics</subject><subject>GridION</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Innovations</subject><subject>Libraries</subject><subject>Life Sciences & Biomedicine</subject><subject>Long read sequencing</subject><subject>Methodology</subject><subject>Methods</subject><subject>MinION</subject><subject>Molecular weight</subject><subject>Mutation</subject><subject>Nanopore Sequencing</subject><subject>Nanopores</subject><subject>Nucleic acids</subject><subject>Nucleotide sequence</subject><subject>Nucleotide sequencing</subject><subject>Oxford Nanopore technologies</subject><subject>Porosity</subject><subject>Protocol</subject><subject>Reagents</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>Retention</subject><subject>Science & Technology</subject><subject>Sequence Analysis, DNA</subject><subject>Shearing</subject><subject>Snails</subject><subject>Three dimensional printing</subject><subject>Ultra-long</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktv1DAUhSMEoqXwB1igSKwQSrm249jeIA3Da6QKJB5ry7GdqUeZeBo7BP49t50ydCQWyIvYvt85yr0-RfGUwDkhsnmVCJVNXQElFQgOUM33ilNSC1JR0tT37-xPikcpbQCIkJQ_LE4YE4QoBqfFm2UcUkjZD7mc-jyaqo_Dunz7aVEmfzX5wQY8ziFflmbKcWuyd2Xq41zuws7njNXHxYPO9Mk_uf2eFd_fv_u2_FhdfP6wWi4uKsuVyFXbCkGZkow76axSUigrawWC1hags23HZQPcgHK0FpxB3WKFWi8Ec60Edlas9r4umo3ejWFrxl86mqBvLuK41mbMwfZeC9MaoxSqlahpy6SqPXOO8taAw5mh1-u9125qt95ZbH80_ZHpcWUIl3odf2ihOOOcocHzW4Mx4phS1ps4jQP2rykHik3VUvyl1gb_KgxdRDO7DcnqRcM5xQcEitT5Pyhczm-DjYPvAt4fCV4cCZDJ_mdemyklvfr65Zile9aOMaXRd4cmCejrGOl9jDTGSN_ESM8oenZ3PAfJn9wgIPfA7NvYJRswKP6AAUBDpVJcwPV2GbLJIQ7LOA0ZpS__X8p-A3SS4S4</recordid><startdate>20210312</startdate><enddate>20210312</enddate><creator>Prall, Trent M.</creator><creator>Neumann, Emma K.</creator><creator>Karl, Julie A.</creator><creator>Shortreed, Cecilia G.</creator><creator>Baker, David A.</creator><creator>Bussan, Hailey E.</creator><creator>Wiseman, Roger W.</creator><creator>O'Connor, David H.</creator><general>Springer Nature</general><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4447-4721</orcidid><orcidid>https://orcid.org/0000-0003-2453-8297</orcidid><orcidid>https://orcid.org/0000-0002-6811-8238</orcidid><orcidid>https://orcid.org/0000-0003-0654-5952</orcidid><orcidid>https://orcid.org/0000-0003-0635-4152</orcidid><orcidid>https://orcid.org/0000-0002-0961-7109</orcidid><orcidid>https://orcid.org/0000-0002-7682-7085</orcidid><orcidid>https://orcid.org/0000-0003-2139-470X</orcidid></search><sort><creationdate>20210312</creationdate><title>Consistent ultra-long DNA sequencing with automated slow pipetting</title><author>Prall, Trent M. ; Neumann, Emma K. ; Karl, Julie A. ; Shortreed, Cecilia G. ; Baker, David A. ; Bussan, Hailey E. ; Wiseman, Roger W. ; O'Connor, David H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-bb77239835d8dc99879c8490724c00fcbf58605a09d2475304b24c2ce773db803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automation</topic><topic>Biotechnology & Applied Microbiology</topic><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Equipment and supplies</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Genetics & Heredity</topic><topic>Genomes</topic><topic>Genomics</topic><topic>GridION</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Innovations</topic><topic>Libraries</topic><topic>Life Sciences & Biomedicine</topic><topic>Long read sequencing</topic><topic>Methodology</topic><topic>Methods</topic><topic>MinION</topic><topic>Molecular weight</topic><topic>Mutation</topic><topic>Nanopore Sequencing</topic><topic>Nanopores</topic><topic>Nucleic acids</topic><topic>Nucleotide sequence</topic><topic>Nucleotide sequencing</topic><topic>Oxford Nanopore technologies</topic><topic>Porosity</topic><topic>Protocol</topic><topic>Reagents</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>Retention</topic><topic>Science & Technology</topic><topic>Sequence Analysis, DNA</topic><topic>Shearing</topic><topic>Snails</topic><topic>Three dimensional printing</topic><topic>Ultra-long</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prall, Trent M.</creatorcontrib><creatorcontrib>Neumann, Emma K.</creatorcontrib><creatorcontrib>Karl, Julie A.</creatorcontrib><creatorcontrib>Shortreed, Cecilia G.</creatorcontrib><creatorcontrib>Baker, David A.</creatorcontrib><creatorcontrib>Bussan, Hailey E.</creatorcontrib><creatorcontrib>Wiseman, Roger W.</creatorcontrib><creatorcontrib>O'Connor, David H.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prall, Trent M.</au><au>Neumann, Emma K.</au><au>Karl, Julie A.</au><au>Shortreed, Cecilia G.</au><au>Baker, David A.</au><au>Bussan, Hailey E.</au><au>Wiseman, Roger W.</au><au>O'Connor, David H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consistent ultra-long DNA sequencing with automated slow pipetting</atitle><jtitle>BMC genomics</jtitle><stitle>BMC GENOMICS</stitle><addtitle>BMC Genomics</addtitle><date>2021-03-12</date><risdate>2021</risdate><volume>22</volume><issue>1</issue><spage>182</spage><epage>12</epage><pages>182-12</pages><artnum>182</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>BackgroundOxford Nanopore Technologies' instruments can sequence reads of great length. Long reads improve sequence assemblies by unambiguously spanning repetitive elements of the genome. Sequencing reads of significant length requires the preservation of long DNA template molecules through library preparation by pipetting reagents as slowly as possible to minimize shearing. This process is time-consuming and inconsistent at preserving read length as even small changes in volumetric flow rate can result in template shearing.ResultsWe have designed SNAILS (Slow Nucleic Acid Instrument for Long Sequences), a 3D-printable instrument that automates slow pipetting of reagents used in long read library preparation for Oxford Nanopore sequencing. Across six sequencing libraries, SNAILS preserved more reads exceeding 100 kilobases in length and increased its libraries' average read length over manual slow pipetting.ConclusionsSNAILS is a low-cost, easily deployable solution for improving sequencing projects that require reads of significant length. By automating the slow pipetting of library preparation reagents, SNAILS increases the consistency and throughput of long read Nanopore sequencing.</abstract><cop>LONDON</cop><pub>Springer Nature</pub><pmid>33711930</pmid><doi>10.1186/s12864-021-07500-w</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4447-4721</orcidid><orcidid>https://orcid.org/0000-0003-2453-8297</orcidid><orcidid>https://orcid.org/0000-0002-6811-8238</orcidid><orcidid>https://orcid.org/0000-0003-0654-5952</orcidid><orcidid>https://orcid.org/0000-0003-0635-4152</orcidid><orcidid>https://orcid.org/0000-0002-0961-7109</orcidid><orcidid>https://orcid.org/0000-0002-7682-7085</orcidid><orcidid>https://orcid.org/0000-0003-2139-470X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2164 |
ispartof | BMC genomics, 2021-03, Vol.22 (1), p.182-12, Article 182 |
issn | 1471-2164 1471-2164 |
language | eng |
recordid | cdi_webofscience_primary_000628995700006CitationCount |
source | MEDLINE; DOAJ Directory of Open Access Journals; SpringerNature Journals; PubMed Central Open Access; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Automation Biotechnology & Applied Microbiology Chromosomes Deoxyribonucleic acid DNA DNA sequencing Equipment and supplies Flow rates Flow velocity Genetics & Heredity Genomes Genomics GridION High-Throughput Nucleotide Sequencing Innovations Libraries Life Sciences & Biomedicine Long read sequencing Methodology Methods MinION Molecular weight Mutation Nanopore Sequencing Nanopores Nucleic acids Nucleotide sequence Nucleotide sequencing Oxford Nanopore technologies Porosity Protocol Reagents Repetitive Sequences, Nucleic Acid Retention Science & Technology Sequence Analysis, DNA Shearing Snails Three dimensional printing Ultra-long |
title | Consistent ultra-long DNA sequencing with automated slow pipetting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consistent%20ultra-long%20DNA%20sequencing%20with%20automated%20slow%20pipetting&rft.jtitle=BMC%20genomics&rft.au=Prall,%20Trent%20M.&rft.date=2021-03-12&rft.volume=22&rft.issue=1&rft.spage=182&rft.epage=12&rft.pages=182-12&rft.artnum=182&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-021-07500-w&rft_dat=%3Cgale_webof%3EA655212802%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502724487&rft_id=info:pmid/33711930&rft_galeid=A655212802&rft_doaj_id=oai_doaj_org_article_7abaa99c2c9742b3894e3dd25ba0d864&rfr_iscdi=true |