Improvement of Phase Change Materials (PCM) Used for Solar Process Heat Applications

The high intermittency of solar energy is still a challenge yet to be overcome. The use of thermal storage has proven to be a good option, with phase change materials (PCM) as very promising candidates. Nevertheless, PCM compounds have typically poor thermal conductivity, reducing their attractivene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2021-02, Vol.26 (5), p.1260, Article 1260
Hauptverfasser: Prieto, Cristina, Lopez-Roman, Anton, Martinez, Noelia, Morera, Josep M., Cabeza, Luisa F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 1260
container_title Molecules (Basel, Switzerland)
container_volume 26
creator Prieto, Cristina
Lopez-Roman, Anton
Martinez, Noelia
Morera, Josep M.
Cabeza, Luisa F.
description The high intermittency of solar energy is still a challenge yet to be overcome. The use of thermal storage has proven to be a good option, with phase change materials (PCM) as very promising candidates. Nevertheless, PCM compounds have typically poor thermal conductivity, reducing their attractiveness for commercial uses. This paper demonstrates the viability of increasing the PCM effective thermal conductivity to industrial required values (around 4 W/m center dot K) by using metal wool infiltrated into the resin under vacuum conditions. To achieve this result, the authors used an inert resin, decoupling the specific PCM material selection from the enhancement effect of the metal wools. To ensure proper behavior of the metal wool under standard industrial environments at a broad range of temperatures, a set of analyses were performed at high temperatures and an inert atmosphere, presenting a thorough analysis of the obtained results.
doi_str_mv 10.3390/molecules26051260
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000628446000001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_78aa4fc679364a0eb2f1e88d37c60e24</doaj_id><sourcerecordid>2497170061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-c0ef2a3ae7e805db0a6797d98c11dbc9e4de43ae638bcadd037f0e27fd418acf3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhiMEoqXwAFyQJS6t0IIdO3ZyQaqiQldqxUq0Z2tij3ezSuJgJ0W8Pd5uWbVwwQfb8nzzz3j-LHvL6EfOK_qp9x2aucOYS1qwtD3LjpnI6YJTUT1_dD_KXsW4pTRnghUvsyPOZZFLJY6zm2U_Bn-HPQ4T8Y6sNhCR1BsY1kiuYcLQQhfJ6aq-PiO3ES1xPpDvvoNAVsEbjJFcIkzkfBy71sDU-iG-zl64lIVvHs6T7PbLxU19ubj69nVZn18tjKj4tDAUXQ4cUGFJC9tQkKpStioNY7YxFQqLIoUlLxsD1lKuHMVcOStYCcbxk2y517UetnoMbQ_hl_bQ6vsHH9YawtSaDrUqAYQzqQCXAig2uWNYlpYrI5OmSFqf91rj3PRoTZpHgO6J6NPI0G702t9pVRWSU54ETh8Egv8xY5x030aDXQcD-jnqXFQyF0Uly4S-_wvd-jkMaVQ7SjFFqWSJYnvKBB9jQHdohlG981__43_Keff4F4eMP4Yn4MMe-ImNd9G0OBg8YDQVzkshJN2tXQvl_9N1O93bX_t5mPhv8HvPBg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497170061</pqid></control><display><type>article</type><title>Improvement of Phase Change Materials (PCM) Used for Solar Process Heat Applications</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Prieto, Cristina ; Lopez-Roman, Anton ; Martinez, Noelia ; Morera, Josep M. ; Cabeza, Luisa F.</creator><creatorcontrib>Prieto, Cristina ; Lopez-Roman, Anton ; Martinez, Noelia ; Morera, Josep M. ; Cabeza, Luisa F.</creatorcontrib><description>The high intermittency of solar energy is still a challenge yet to be overcome. The use of thermal storage has proven to be a good option, with phase change materials (PCM) as very promising candidates. Nevertheless, PCM compounds have typically poor thermal conductivity, reducing their attractiveness for commercial uses. This paper demonstrates the viability of increasing the PCM effective thermal conductivity to industrial required values (around 4 W/m center dot K) by using metal wool infiltrated into the resin under vacuum conditions. To achieve this result, the authors used an inert resin, decoupling the specific PCM material selection from the enhancement effect of the metal wools. To ensure proper behavior of the metal wool under standard industrial environments at a broad range of temperatures, a set of analyses were performed at high temperatures and an inert atmosphere, presenting a thorough analysis of the obtained results.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules26051260</identifier><identifier>PMID: 33652674</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Biochemistry &amp; Molecular Biology ; Chemistry ; Chemistry, Multidisciplinary ; Composite materials ; Composite Resins - chemistry ; Decoupling ; effective thermal conductivity enhancement ; Electric Power Supplies ; Graphite ; Heat conductivity ; Heat transfer ; High temperature ; Hot Temperature ; Humans ; inert atmosphere ; Inert atmospheres ; Life Sciences &amp; Biomedicine ; Materials selection ; metal wool ; Metals - chemistry ; phase change material ; Phase change materials ; Phase Transition ; Physical Sciences ; Process heat ; Resins ; Science &amp; Technology ; Solar Energy ; solar process heat ; Thermal Conductivity ; Thermal cycling ; Thermal energy ; thermal energy storage ; Thermal storage ; Vacuum ; Wool</subject><ispartof>Molecules (Basel, Switzerland), 2021-02, Vol.26 (5), p.1260, Article 1260</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000628446000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c493t-c0ef2a3ae7e805db0a6797d98c11dbc9e4de43ae638bcadd037f0e27fd418acf3</citedby><cites>FETCH-LOGICAL-c493t-c0ef2a3ae7e805db0a6797d98c11dbc9e4de43ae638bcadd037f0e27fd418acf3</cites><orcidid>0000-0003-0905-3427 ; 0000-0002-4338-6682 ; 0000-0002-9300-6967 ; 0000-0001-5086-872X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956303/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956303/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33652674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prieto, Cristina</creatorcontrib><creatorcontrib>Lopez-Roman, Anton</creatorcontrib><creatorcontrib>Martinez, Noelia</creatorcontrib><creatorcontrib>Morera, Josep M.</creatorcontrib><creatorcontrib>Cabeza, Luisa F.</creatorcontrib><title>Improvement of Phase Change Materials (PCM) Used for Solar Process Heat Applications</title><title>Molecules (Basel, Switzerland)</title><addtitle>MOLECULES</addtitle><addtitle>Molecules</addtitle><description>The high intermittency of solar energy is still a challenge yet to be overcome. The use of thermal storage has proven to be a good option, with phase change materials (PCM) as very promising candidates. Nevertheless, PCM compounds have typically poor thermal conductivity, reducing their attractiveness for commercial uses. This paper demonstrates the viability of increasing the PCM effective thermal conductivity to industrial required values (around 4 W/m center dot K) by using metal wool infiltrated into the resin under vacuum conditions. To achieve this result, the authors used an inert resin, decoupling the specific PCM material selection from the enhancement effect of the metal wools. To ensure proper behavior of the metal wool under standard industrial environments at a broad range of temperatures, a set of analyses were performed at high temperatures and an inert atmosphere, presenting a thorough analysis of the obtained results.</description><subject>Biochemistry &amp; Molecular Biology</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Composite materials</subject><subject>Composite Resins - chemistry</subject><subject>Decoupling</subject><subject>effective thermal conductivity enhancement</subject><subject>Electric Power Supplies</subject><subject>Graphite</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>inert atmosphere</subject><subject>Inert atmospheres</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Materials selection</subject><subject>metal wool</subject><subject>Metals - chemistry</subject><subject>phase change material</subject><subject>Phase change materials</subject><subject>Phase Transition</subject><subject>Physical Sciences</subject><subject>Process heat</subject><subject>Resins</subject><subject>Science &amp; Technology</subject><subject>Solar Energy</subject><subject>solar process heat</subject><subject>Thermal Conductivity</subject><subject>Thermal cycling</subject><subject>Thermal energy</subject><subject>thermal energy storage</subject><subject>Thermal storage</subject><subject>Vacuum</subject><subject>Wool</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkcFu1DAQhiMEoqXwAFyQJS6t0IIdO3ZyQaqiQldqxUq0Z2tij3ezSuJgJ0W8Pd5uWbVwwQfb8nzzz3j-LHvL6EfOK_qp9x2aucOYS1qwtD3LjpnI6YJTUT1_dD_KXsW4pTRnghUvsyPOZZFLJY6zm2U_Bn-HPQ4T8Y6sNhCR1BsY1kiuYcLQQhfJ6aq-PiO3ES1xPpDvvoNAVsEbjJFcIkzkfBy71sDU-iG-zl64lIVvHs6T7PbLxU19ubj69nVZn18tjKj4tDAUXQ4cUGFJC9tQkKpStioNY7YxFQqLIoUlLxsD1lKuHMVcOStYCcbxk2y517UetnoMbQ_hl_bQ6vsHH9YawtSaDrUqAYQzqQCXAig2uWNYlpYrI5OmSFqf91rj3PRoTZpHgO6J6NPI0G702t9pVRWSU54ETh8Egv8xY5x030aDXQcD-jnqXFQyF0Uly4S-_wvd-jkMaVQ7SjFFqWSJYnvKBB9jQHdohlG981__43_Keff4F4eMP4Yn4MMe-ImNd9G0OBg8YDQVzkshJN2tXQvl_9N1O93bX_t5mPhv8HvPBg</recordid><startdate>20210226</startdate><enddate>20210226</enddate><creator>Prieto, Cristina</creator><creator>Lopez-Roman, Anton</creator><creator>Martinez, Noelia</creator><creator>Morera, Josep M.</creator><creator>Cabeza, Luisa F.</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0905-3427</orcidid><orcidid>https://orcid.org/0000-0002-4338-6682</orcidid><orcidid>https://orcid.org/0000-0002-9300-6967</orcidid><orcidid>https://orcid.org/0000-0001-5086-872X</orcidid></search><sort><creationdate>20210226</creationdate><title>Improvement of Phase Change Materials (PCM) Used for Solar Process Heat Applications</title><author>Prieto, Cristina ; Lopez-Roman, Anton ; Martinez, Noelia ; Morera, Josep M. ; Cabeza, Luisa F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-c0ef2a3ae7e805db0a6797d98c11dbc9e4de43ae638bcadd037f0e27fd418acf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry &amp; Molecular Biology</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Composite materials</topic><topic>Composite Resins - chemistry</topic><topic>Decoupling</topic><topic>effective thermal conductivity enhancement</topic><topic>Electric Power Supplies</topic><topic>Graphite</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>inert atmosphere</topic><topic>Inert atmospheres</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Materials selection</topic><topic>metal wool</topic><topic>Metals - chemistry</topic><topic>phase change material</topic><topic>Phase change materials</topic><topic>Phase Transition</topic><topic>Physical Sciences</topic><topic>Process heat</topic><topic>Resins</topic><topic>Science &amp; Technology</topic><topic>Solar Energy</topic><topic>solar process heat</topic><topic>Thermal Conductivity</topic><topic>Thermal cycling</topic><topic>Thermal energy</topic><topic>thermal energy storage</topic><topic>Thermal storage</topic><topic>Vacuum</topic><topic>Wool</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prieto, Cristina</creatorcontrib><creatorcontrib>Lopez-Roman, Anton</creatorcontrib><creatorcontrib>Martinez, Noelia</creatorcontrib><creatorcontrib>Morera, Josep M.</creatorcontrib><creatorcontrib>Cabeza, Luisa F.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prieto, Cristina</au><au>Lopez-Roman, Anton</au><au>Martinez, Noelia</au><au>Morera, Josep M.</au><au>Cabeza, Luisa F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of Phase Change Materials (PCM) Used for Solar Process Heat Applications</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><stitle>MOLECULES</stitle><addtitle>Molecules</addtitle><date>2021-02-26</date><risdate>2021</risdate><volume>26</volume><issue>5</issue><spage>1260</spage><pages>1260-</pages><artnum>1260</artnum><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>The high intermittency of solar energy is still a challenge yet to be overcome. The use of thermal storage has proven to be a good option, with phase change materials (PCM) as very promising candidates. Nevertheless, PCM compounds have typically poor thermal conductivity, reducing their attractiveness for commercial uses. This paper demonstrates the viability of increasing the PCM effective thermal conductivity to industrial required values (around 4 W/m center dot K) by using metal wool infiltrated into the resin under vacuum conditions. To achieve this result, the authors used an inert resin, decoupling the specific PCM material selection from the enhancement effect of the metal wools. To ensure proper behavior of the metal wool under standard industrial environments at a broad range of temperatures, a set of analyses were performed at high temperatures and an inert atmosphere, presenting a thorough analysis of the obtained results.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33652674</pmid><doi>10.3390/molecules26051260</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0905-3427</orcidid><orcidid>https://orcid.org/0000-0002-4338-6682</orcidid><orcidid>https://orcid.org/0000-0002-9300-6967</orcidid><orcidid>https://orcid.org/0000-0001-5086-872X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2021-02, Vol.26 (5), p.1260, Article 1260
issn 1420-3049
1420-3049
language eng
recordid cdi_webofscience_primary_000628446000001
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Free Full-Text Journals in Chemistry
subjects Biochemistry & Molecular Biology
Chemistry
Chemistry, Multidisciplinary
Composite materials
Composite Resins - chemistry
Decoupling
effective thermal conductivity enhancement
Electric Power Supplies
Graphite
Heat conductivity
Heat transfer
High temperature
Hot Temperature
Humans
inert atmosphere
Inert atmospheres
Life Sciences & Biomedicine
Materials selection
metal wool
Metals - chemistry
phase change material
Phase change materials
Phase Transition
Physical Sciences
Process heat
Resins
Science & Technology
Solar Energy
solar process heat
Thermal Conductivity
Thermal cycling
Thermal energy
thermal energy storage
Thermal storage
Vacuum
Wool
title Improvement of Phase Change Materials (PCM) Used for Solar Process Heat Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T05%3A01%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20Phase%20Change%20Materials%20(PCM)%20Used%20for%20Solar%20Process%20Heat%20Applications&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Prieto,%20Cristina&rft.date=2021-02-26&rft.volume=26&rft.issue=5&rft.spage=1260&rft.pages=1260-&rft.artnum=1260&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules26051260&rft_dat=%3Cproquest_webof%3E2497170061%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497170061&rft_id=info:pmid/33652674&rft_doaj_id=oai_doaj_org_article_78aa4fc679364a0eb2f1e88d37c60e24&rfr_iscdi=true