Asymptotically Exact Constants in Natural Convergence Rate Estimates in the Lindeberg Theorem

Following (Shevtsova, 2013) we introduce detailed classification of the asymptotically exact constants in natural estimates of the rate of convergence in the Lindeberg central limit theorem, namely in Esseen's, Rozovskii's, and Wang-Ahmad's inequalities and their structural improvemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2021-03, Vol.9 (5), p.501, Article 501
Hauptverfasser: Gabdullin, Ruslan, Makarenko, Vladimir, Shevtsova, Irina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Following (Shevtsova, 2013) we introduce detailed classification of the asymptotically exact constants in natural estimates of the rate of convergence in the Lindeberg central limit theorem, namely in Esseen's, Rozovskii's, and Wang-Ahmad's inequalities and their structural improvements obtained in our previous works. The above inequalities involve algebraic truncated third-order moments and the classical Lindeberg fraction and assume finiteness only the second-order moments of random summands. We present lower bounds for the introduced asymptotically exact constants as well as for the universal and for the most optimistic constants which turn to be not far from the upper ones.
ISSN:2227-7390
2227-7390
DOI:10.3390/math9050501