In silico Analyses of Immune System Protein Interactome Network, Single-Cell RNA Sequencing of Human Tissues, and Artificial Neural Networks Reveal Potential Therapeutic Targets for Drug Repurposing Against COVID-19
Background: There is pressing urgency to identify therapeutic targets and drugs that allow treating COVID-19 patients effectively. Methods: We performed in silico analyses of immune system protein interactome network, single-cell RNA sequencing of human tissues, and artificial neural networks to rev...
Gespeichert in:
Veröffentlicht in: | Frontiers in pharmacology 2021-02, Vol.12, p.598925, Article 598925 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 598925 |
container_title | Frontiers in pharmacology |
container_volume | 12 |
creator | Lopez-Cortes, Andres Guevara-Ramirez, Patricia Kyriakidis, Nikolaos C. Barba-Ostria, Carlos Leon Caceres, Angela Guerrero, Santiago Ortiz-Prado, Esteban Munteanu, Cristian R. Tejera, Eduardo Cevallos-Robalino, Domenica Gomez-Jaramillo, Ana Maria Simbana-Rivera, Katherine Granizo-Martinez, Adriana Perez-M, Gabriela Moreno, Silvana Garcia-Cardenas, Jennyfer M. Zambrano, Ana Karina Perez-Castillo, Yunierkis Cabrera-Andrade, Alejandro Puig San Andres, Lourdes Proano-Castro, Carolina Bautista, Jhommara Quevedo, Andreina Varela, Nelson Quinones, Luis Abel Paz-y-Mino, Cesar |
description | Background: There is pressing urgency to identify therapeutic targets and drugs that allow treating COVID-19 patients effectively.
Methods: We performed in silico analyses of immune system protein interactome network, single-cell RNA sequencing of human tissues, and artificial neural networks to reveal potential therapeutic targets for drug repurposing against COVID-19.
Results: We screened 1,584 high-confidence immune system proteins in ACE2 and TMPRSS2 co-expressing cells, finding 25 potential therapeutic targets significantly overexpressed in nasal goblet secretory cells, lung type II pneumocytes, and ileal absorptive enterocytes of patients with several immunopathologies. Then, we performed fully connected deep neural networks to find the best multitask classification model to predict the activity of 10,672 drugs, obtaining several approved drugs, compounds under investigation, and experimental compounds with the highest area under the receiver operating characteristics.
Conclusion: After being effectively analyzed in clinical trials, these drugs can be considered for treatment of severe COVID-19 patients. Scripts can be downloaded at. |
doi_str_mv | 10.3389/fphar.2021.598925 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_webof</sourceid><recordid>TN_cdi_webofscience_primary_000627583900001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_12ff2b56580a4125942a16060c739b52</doaj_id><sourcerecordid>33716737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-12f490bdbfc4ca8bd5ea6c510fd897133f59d07e9d698a79c8bf64dd586e44413</originalsourceid><addsrcrecordid>eNqNkk1v0zAYxyMEYlPZB-CCfGcpcRwn8QWp6oBVmrZpLVwjx3mceSR2sZ1V_aR8HZwGqvWGL4_j_F9k6xdF73EyJ6Rkn-T2kdt5mqR4TlnJUvoqOsd5TmJW4vT1i_1ZdOHcUxIWYYzk2dvojJAC5wUpzqPfK42c6pQwaKF5t3fgkJFo1feDBrTeOw89urfGg9JopT1YLrzpAd2C3xn78xKtlW47iJfQdejhdoHW8GsALcLpGHQ99FyjjXJuAHeJuG7QwnollVC8CyGDPYxDlkMP8Azh-z7UaT8KNo-hcAuDVwJtuG3BOySNRVd2aIN6O9itcWPVouVKO4-Wdz9WVzFm76I3kncOLv7OWfT965fN8jq-ufu2Wi5uYkGTzMc4lRlL6qaWIhO8rBsKPBcUJ7IpWYEJkZQ1SQGsyVnJCybKWuZZ09AyhyzLMJlFqym3Mfyp2lrVc7uvDFfV4cDYtuLhvqKDKnTJtKY5LROe4ZSyLOU4T_JEFITVNA1Z8ynL7cLN6pM01w01t-OoXIjCmGZlMHyeDEHdQyPCo4XnPPGd_tHqsWrNc1WwUBd4mEV4ChDWOGdBHr04qUbKqgNl1UhZNVEWPB9elh4d_5gKgnIS7KA20gkVaICjLGCYpwUtCRuJxEvluVdGL82gfbB-_H8r-QPbfPQg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In silico Analyses of Immune System Protein Interactome Network, Single-Cell RNA Sequencing of Human Tissues, and Artificial Neural Networks Reveal Potential Therapeutic Targets for Drug Repurposing Against COVID-19</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SWEPUB Freely available online</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><creator>Lopez-Cortes, Andres ; Guevara-Ramirez, Patricia ; Kyriakidis, Nikolaos C. ; Barba-Ostria, Carlos ; Leon Caceres, Angela ; Guerrero, Santiago ; Ortiz-Prado, Esteban ; Munteanu, Cristian R. ; Tejera, Eduardo ; Cevallos-Robalino, Domenica ; Gomez-Jaramillo, Ana Maria ; Simbana-Rivera, Katherine ; Granizo-Martinez, Adriana ; Perez-M, Gabriela ; Moreno, Silvana ; Garcia-Cardenas, Jennyfer M. ; Zambrano, Ana Karina ; Perez-Castillo, Yunierkis ; Cabrera-Andrade, Alejandro ; Puig San Andres, Lourdes ; Proano-Castro, Carolina ; Bautista, Jhommara ; Quevedo, Andreina ; Varela, Nelson ; Quinones, Luis Abel ; Paz-y-Mino, Cesar</creator><creatorcontrib>Lopez-Cortes, Andres ; Guevara-Ramirez, Patricia ; Kyriakidis, Nikolaos C. ; Barba-Ostria, Carlos ; Leon Caceres, Angela ; Guerrero, Santiago ; Ortiz-Prado, Esteban ; Munteanu, Cristian R. ; Tejera, Eduardo ; Cevallos-Robalino, Domenica ; Gomez-Jaramillo, Ana Maria ; Simbana-Rivera, Katherine ; Granizo-Martinez, Adriana ; Perez-M, Gabriela ; Moreno, Silvana ; Garcia-Cardenas, Jennyfer M. ; Zambrano, Ana Karina ; Perez-Castillo, Yunierkis ; Cabrera-Andrade, Alejandro ; Puig San Andres, Lourdes ; Proano-Castro, Carolina ; Bautista, Jhommara ; Quevedo, Andreina ; Varela, Nelson ; Quinones, Luis Abel ; Paz-y-Mino, Cesar ; Sveriges lantbruksuniversitet</creatorcontrib><description>Background: There is pressing urgency to identify therapeutic targets and drugs that allow treating COVID-19 patients effectively.
Methods: We performed in silico analyses of immune system protein interactome network, single-cell RNA sequencing of human tissues, and artificial neural networks to reveal potential therapeutic targets for drug repurposing against COVID-19.
Results: We screened 1,584 high-confidence immune system proteins in ACE2 and TMPRSS2 co-expressing cells, finding 25 potential therapeutic targets significantly overexpressed in nasal goblet secretory cells, lung type II pneumocytes, and ileal absorptive enterocytes of patients with several immunopathologies. Then, we performed fully connected deep neural networks to find the best multitask classification model to predict the activity of 10,672 drugs, obtaining several approved drugs, compounds under investigation, and experimental compounds with the highest area under the receiver operating characteristics.
Conclusion: After being effectively analyzed in clinical trials, these drugs can be considered for treatment of severe COVID-19 patients. Scripts can be downloaded at.</description><identifier>ISSN: 1663-9812</identifier><identifier>EISSN: 1663-9812</identifier><identifier>DOI: 10.3389/fphar.2021.598925</identifier><identifier>PMID: 33716737</identifier><language>eng</language><publisher>LAUSANNE: Frontiers Media Sa</publisher><subject>artificial neural networks ; COVID-19 ; drug repurposing ; Farmaceutisk vetenskap ; immune system ; Life Sciences & Biomedicine ; Pharmaceutical Sciences ; Pharmacology ; Pharmacology & Pharmacy ; Science & Technology ; single-cell RNA sequencing</subject><ispartof>Frontiers in pharmacology, 2021-02, Vol.12, p.598925, Article 598925</ispartof><rights>Copyright © 2021 López-Cortés, Guevara-Ramírez, Kyriakidis, Barba-Ostria, León Cáceres, Guerrero, Ortiz-Prado, Munteanu, Tejera, Cevallos-Robalino, Gómez-Jaramillo, Simbaña-Rivera, Granizo-Martínez, Pérez-M, Moreno, García-Cárdenas, Zambrano, Pérez-Castillo, Cabrera-Andrade, Puig San Andrés, Proaño-Castro, Bautista, Quevedo, Varela, Quiñones and Paz-y-Miño.</rights><rights>Copyright © 2021 López-Cortés, Guevara-Ramírez, Kyriakidis, Barba-Ostria, León Cáceres, Guerrero, Ortiz-Prado, Munteanu, Tejera, Cevallos-Robalino, Gómez-Jaramillo, Simbaña-Rivera, Granizo-Martínez, Pérez-M, Moreno, García-Cárdenas, Zambrano, Pérez-Castillo, Cabrera-Andrade, Puig San Andrés, Proaño-Castro, Bautista, Quevedo, Varela, Quiñones and Paz-y-Miño. 2021 López-Cortés, Guevara-Ramírez, Kyriakidis, Barba-Ostria, León Cáceres, Guerrero, Ortiz-Prado, Munteanu, Tejera, Cevallos-Robalino, Gómez-Jaramillo, Simbaña-Rivera, Granizo-Martínez, Pérez-M, Moreno, García-Cárdenas, Zambrano, Pérez-Castillo, Cabrera-Andrade, Puig San Andrés, Proaño-Castro, Bautista, Quevedo, Varela, Quiñones and Paz-y-Miño</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>16</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000627583900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c504t-12f490bdbfc4ca8bd5ea6c510fd897133f59d07e9d698a79c8bf64dd586e44413</citedby><cites>FETCH-LOGICAL-c504t-12f490bdbfc4ca8bd5ea6c510fd897133f59d07e9d698a79c8bf64dd586e44413</cites><orcidid>0000-0001-9702-6618 ; 0000-0003-1503-1929 ; 0000-0002-8930-0477 ; 0000-0002-9717-8096 ; 0000-0002-1377-0413 ; 0000-0001-9035-7668 ; 0000-0002-7967-5320 ; 0000-0003-3473-7214 ; 0000-0002-4829-3653 ; 0000-0002-1895-7498 ; 0000-0002-3710-0035 ; 0000-0002-8130-5361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7952300/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7952300/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,553,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33716737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/111548$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopez-Cortes, Andres</creatorcontrib><creatorcontrib>Guevara-Ramirez, Patricia</creatorcontrib><creatorcontrib>Kyriakidis, Nikolaos C.</creatorcontrib><creatorcontrib>Barba-Ostria, Carlos</creatorcontrib><creatorcontrib>Leon Caceres, Angela</creatorcontrib><creatorcontrib>Guerrero, Santiago</creatorcontrib><creatorcontrib>Ortiz-Prado, Esteban</creatorcontrib><creatorcontrib>Munteanu, Cristian R.</creatorcontrib><creatorcontrib>Tejera, Eduardo</creatorcontrib><creatorcontrib>Cevallos-Robalino, Domenica</creatorcontrib><creatorcontrib>Gomez-Jaramillo, Ana Maria</creatorcontrib><creatorcontrib>Simbana-Rivera, Katherine</creatorcontrib><creatorcontrib>Granizo-Martinez, Adriana</creatorcontrib><creatorcontrib>Perez-M, Gabriela</creatorcontrib><creatorcontrib>Moreno, Silvana</creatorcontrib><creatorcontrib>Garcia-Cardenas, Jennyfer M.</creatorcontrib><creatorcontrib>Zambrano, Ana Karina</creatorcontrib><creatorcontrib>Perez-Castillo, Yunierkis</creatorcontrib><creatorcontrib>Cabrera-Andrade, Alejandro</creatorcontrib><creatorcontrib>Puig San Andres, Lourdes</creatorcontrib><creatorcontrib>Proano-Castro, Carolina</creatorcontrib><creatorcontrib>Bautista, Jhommara</creatorcontrib><creatorcontrib>Quevedo, Andreina</creatorcontrib><creatorcontrib>Varela, Nelson</creatorcontrib><creatorcontrib>Quinones, Luis Abel</creatorcontrib><creatorcontrib>Paz-y-Mino, Cesar</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>In silico Analyses of Immune System Protein Interactome Network, Single-Cell RNA Sequencing of Human Tissues, and Artificial Neural Networks Reveal Potential Therapeutic Targets for Drug Repurposing Against COVID-19</title><title>Frontiers in pharmacology</title><addtitle>FRONT PHARMACOL</addtitle><addtitle>Front Pharmacol</addtitle><description>Background: There is pressing urgency to identify therapeutic targets and drugs that allow treating COVID-19 patients effectively.
Methods: We performed in silico analyses of immune system protein interactome network, single-cell RNA sequencing of human tissues, and artificial neural networks to reveal potential therapeutic targets for drug repurposing against COVID-19.
Results: We screened 1,584 high-confidence immune system proteins in ACE2 and TMPRSS2 co-expressing cells, finding 25 potential therapeutic targets significantly overexpressed in nasal goblet secretory cells, lung type II pneumocytes, and ileal absorptive enterocytes of patients with several immunopathologies. Then, we performed fully connected deep neural networks to find the best multitask classification model to predict the activity of 10,672 drugs, obtaining several approved drugs, compounds under investigation, and experimental compounds with the highest area under the receiver operating characteristics.
Conclusion: After being effectively analyzed in clinical trials, these drugs can be considered for treatment of severe COVID-19 patients. Scripts can be downloaded at.</description><subject>artificial neural networks</subject><subject>COVID-19</subject><subject>drug repurposing</subject><subject>Farmaceutisk vetenskap</subject><subject>immune system</subject><subject>Life Sciences & Biomedicine</subject><subject>Pharmaceutical Sciences</subject><subject>Pharmacology</subject><subject>Pharmacology & Pharmacy</subject><subject>Science & Technology</subject><subject>single-cell RNA sequencing</subject><issn>1663-9812</issn><issn>1663-9812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v0zAYxyMEYlPZB-CCfGcpcRwn8QWp6oBVmrZpLVwjx3mceSR2sZ1V_aR8HZwGqvWGL4_j_F9k6xdF73EyJ6Rkn-T2kdt5mqR4TlnJUvoqOsd5TmJW4vT1i_1ZdOHcUxIWYYzk2dvojJAC5wUpzqPfK42c6pQwaKF5t3fgkJFo1feDBrTeOw89urfGg9JopT1YLrzpAd2C3xn78xKtlW47iJfQdejhdoHW8GsALcLpGHQ99FyjjXJuAHeJuG7QwnollVC8CyGDPYxDlkMP8Azh-z7UaT8KNo-hcAuDVwJtuG3BOySNRVd2aIN6O9itcWPVouVKO4-Wdz9WVzFm76I3kncOLv7OWfT965fN8jq-ufu2Wi5uYkGTzMc4lRlL6qaWIhO8rBsKPBcUJ7IpWYEJkZQ1SQGsyVnJCybKWuZZ09AyhyzLMJlFqym3Mfyp2lrVc7uvDFfV4cDYtuLhvqKDKnTJtKY5LROe4ZSyLOU4T_JEFITVNA1Z8ynL7cLN6pM01w01t-OoXIjCmGZlMHyeDEHdQyPCo4XnPPGd_tHqsWrNc1WwUBd4mEV4ChDWOGdBHr04qUbKqgNl1UhZNVEWPB9elh4d_5gKgnIS7KA20gkVaICjLGCYpwUtCRuJxEvluVdGL82gfbB-_H8r-QPbfPQg</recordid><startdate>20210226</startdate><enddate>20210226</enddate><creator>Lopez-Cortes, Andres</creator><creator>Guevara-Ramirez, Patricia</creator><creator>Kyriakidis, Nikolaos C.</creator><creator>Barba-Ostria, Carlos</creator><creator>Leon Caceres, Angela</creator><creator>Guerrero, Santiago</creator><creator>Ortiz-Prado, Esteban</creator><creator>Munteanu, Cristian R.</creator><creator>Tejera, Eduardo</creator><creator>Cevallos-Robalino, Domenica</creator><creator>Gomez-Jaramillo, Ana Maria</creator><creator>Simbana-Rivera, Katherine</creator><creator>Granizo-Martinez, Adriana</creator><creator>Perez-M, Gabriela</creator><creator>Moreno, Silvana</creator><creator>Garcia-Cardenas, Jennyfer M.</creator><creator>Zambrano, Ana Karina</creator><creator>Perez-Castillo, Yunierkis</creator><creator>Cabrera-Andrade, Alejandro</creator><creator>Puig San Andres, Lourdes</creator><creator>Proano-Castro, Carolina</creator><creator>Bautista, Jhommara</creator><creator>Quevedo, Andreina</creator><creator>Varela, Nelson</creator><creator>Quinones, Luis Abel</creator><creator>Paz-y-Mino, Cesar</creator><general>Frontiers Media Sa</general><general>Frontiers Media S.A</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9702-6618</orcidid><orcidid>https://orcid.org/0000-0003-1503-1929</orcidid><orcidid>https://orcid.org/0000-0002-8930-0477</orcidid><orcidid>https://orcid.org/0000-0002-9717-8096</orcidid><orcidid>https://orcid.org/0000-0002-1377-0413</orcidid><orcidid>https://orcid.org/0000-0001-9035-7668</orcidid><orcidid>https://orcid.org/0000-0002-7967-5320</orcidid><orcidid>https://orcid.org/0000-0003-3473-7214</orcidid><orcidid>https://orcid.org/0000-0002-4829-3653</orcidid><orcidid>https://orcid.org/0000-0002-1895-7498</orcidid><orcidid>https://orcid.org/0000-0002-3710-0035</orcidid><orcidid>https://orcid.org/0000-0002-8130-5361</orcidid></search><sort><creationdate>20210226</creationdate><title>In silico Analyses of Immune System Protein Interactome Network, Single-Cell RNA Sequencing of Human Tissues, and Artificial Neural Networks Reveal Potential Therapeutic Targets for Drug Repurposing Against COVID-19</title><author>Lopez-Cortes, Andres ; Guevara-Ramirez, Patricia ; Kyriakidis, Nikolaos C. ; Barba-Ostria, Carlos ; Leon Caceres, Angela ; Guerrero, Santiago ; Ortiz-Prado, Esteban ; Munteanu, Cristian R. ; Tejera, Eduardo ; Cevallos-Robalino, Domenica ; Gomez-Jaramillo, Ana Maria ; Simbana-Rivera, Katherine ; Granizo-Martinez, Adriana ; Perez-M, Gabriela ; Moreno, Silvana ; Garcia-Cardenas, Jennyfer M. ; Zambrano, Ana Karina ; Perez-Castillo, Yunierkis ; Cabrera-Andrade, Alejandro ; Puig San Andres, Lourdes ; Proano-Castro, Carolina ; Bautista, Jhommara ; Quevedo, Andreina ; Varela, Nelson ; Quinones, Luis Abel ; Paz-y-Mino, Cesar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-12f490bdbfc4ca8bd5ea6c510fd897133f59d07e9d698a79c8bf64dd586e44413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>artificial neural networks</topic><topic>COVID-19</topic><topic>drug repurposing</topic><topic>Farmaceutisk vetenskap</topic><topic>immune system</topic><topic>Life Sciences & Biomedicine</topic><topic>Pharmaceutical Sciences</topic><topic>Pharmacology</topic><topic>Pharmacology & Pharmacy</topic><topic>Science & Technology</topic><topic>single-cell RNA sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez-Cortes, Andres</creatorcontrib><creatorcontrib>Guevara-Ramirez, Patricia</creatorcontrib><creatorcontrib>Kyriakidis, Nikolaos C.</creatorcontrib><creatorcontrib>Barba-Ostria, Carlos</creatorcontrib><creatorcontrib>Leon Caceres, Angela</creatorcontrib><creatorcontrib>Guerrero, Santiago</creatorcontrib><creatorcontrib>Ortiz-Prado, Esteban</creatorcontrib><creatorcontrib>Munteanu, Cristian R.</creatorcontrib><creatorcontrib>Tejera, Eduardo</creatorcontrib><creatorcontrib>Cevallos-Robalino, Domenica</creatorcontrib><creatorcontrib>Gomez-Jaramillo, Ana Maria</creatorcontrib><creatorcontrib>Simbana-Rivera, Katherine</creatorcontrib><creatorcontrib>Granizo-Martinez, Adriana</creatorcontrib><creatorcontrib>Perez-M, Gabriela</creatorcontrib><creatorcontrib>Moreno, Silvana</creatorcontrib><creatorcontrib>Garcia-Cardenas, Jennyfer M.</creatorcontrib><creatorcontrib>Zambrano, Ana Karina</creatorcontrib><creatorcontrib>Perez-Castillo, Yunierkis</creatorcontrib><creatorcontrib>Cabrera-Andrade, Alejandro</creatorcontrib><creatorcontrib>Puig San Andres, Lourdes</creatorcontrib><creatorcontrib>Proano-Castro, Carolina</creatorcontrib><creatorcontrib>Bautista, Jhommara</creatorcontrib><creatorcontrib>Quevedo, Andreina</creatorcontrib><creatorcontrib>Varela, Nelson</creatorcontrib><creatorcontrib>Quinones, Luis Abel</creatorcontrib><creatorcontrib>Paz-y-Mino, Cesar</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez-Cortes, Andres</au><au>Guevara-Ramirez, Patricia</au><au>Kyriakidis, Nikolaos C.</au><au>Barba-Ostria, Carlos</au><au>Leon Caceres, Angela</au><au>Guerrero, Santiago</au><au>Ortiz-Prado, Esteban</au><au>Munteanu, Cristian R.</au><au>Tejera, Eduardo</au><au>Cevallos-Robalino, Domenica</au><au>Gomez-Jaramillo, Ana Maria</au><au>Simbana-Rivera, Katherine</au><au>Granizo-Martinez, Adriana</au><au>Perez-M, Gabriela</au><au>Moreno, Silvana</au><au>Garcia-Cardenas, Jennyfer M.</au><au>Zambrano, Ana Karina</au><au>Perez-Castillo, Yunierkis</au><au>Cabrera-Andrade, Alejandro</au><au>Puig San Andres, Lourdes</au><au>Proano-Castro, Carolina</au><au>Bautista, Jhommara</au><au>Quevedo, Andreina</au><au>Varela, Nelson</au><au>Quinones, Luis Abel</au><au>Paz-y-Mino, Cesar</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In silico Analyses of Immune System Protein Interactome Network, Single-Cell RNA Sequencing of Human Tissues, and Artificial Neural Networks Reveal Potential Therapeutic Targets for Drug Repurposing Against COVID-19</atitle><jtitle>Frontiers in pharmacology</jtitle><stitle>FRONT PHARMACOL</stitle><addtitle>Front Pharmacol</addtitle><date>2021-02-26</date><risdate>2021</risdate><volume>12</volume><spage>598925</spage><pages>598925-</pages><artnum>598925</artnum><issn>1663-9812</issn><eissn>1663-9812</eissn><abstract>Background: There is pressing urgency to identify therapeutic targets and drugs that allow treating COVID-19 patients effectively.
Methods: We performed in silico analyses of immune system protein interactome network, single-cell RNA sequencing of human tissues, and artificial neural networks to reveal potential therapeutic targets for drug repurposing against COVID-19.
Results: We screened 1,584 high-confidence immune system proteins in ACE2 and TMPRSS2 co-expressing cells, finding 25 potential therapeutic targets significantly overexpressed in nasal goblet secretory cells, lung type II pneumocytes, and ileal absorptive enterocytes of patients with several immunopathologies. Then, we performed fully connected deep neural networks to find the best multitask classification model to predict the activity of 10,672 drugs, obtaining several approved drugs, compounds under investigation, and experimental compounds with the highest area under the receiver operating characteristics.
Conclusion: After being effectively analyzed in clinical trials, these drugs can be considered for treatment of severe COVID-19 patients. Scripts can be downloaded at.</abstract><cop>LAUSANNE</cop><pub>Frontiers Media Sa</pub><pmid>33716737</pmid><doi>10.3389/fphar.2021.598925</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-9702-6618</orcidid><orcidid>https://orcid.org/0000-0003-1503-1929</orcidid><orcidid>https://orcid.org/0000-0002-8930-0477</orcidid><orcidid>https://orcid.org/0000-0002-9717-8096</orcidid><orcidid>https://orcid.org/0000-0002-1377-0413</orcidid><orcidid>https://orcid.org/0000-0001-9035-7668</orcidid><orcidid>https://orcid.org/0000-0002-7967-5320</orcidid><orcidid>https://orcid.org/0000-0003-3473-7214</orcidid><orcidid>https://orcid.org/0000-0002-4829-3653</orcidid><orcidid>https://orcid.org/0000-0002-1895-7498</orcidid><orcidid>https://orcid.org/0000-0002-3710-0035</orcidid><orcidid>https://orcid.org/0000-0002-8130-5361</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1663-9812 |
ispartof | Frontiers in pharmacology, 2021-02, Vol.12, p.598925, Article 598925 |
issn | 1663-9812 1663-9812 |
language | eng |
recordid | cdi_webofscience_primary_000627583900001CitationCount |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SWEPUB Freely available online; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central |
subjects | artificial neural networks COVID-19 drug repurposing Farmaceutisk vetenskap immune system Life Sciences & Biomedicine Pharmaceutical Sciences Pharmacology Pharmacology & Pharmacy Science & Technology single-cell RNA sequencing |
title | In silico Analyses of Immune System Protein Interactome Network, Single-Cell RNA Sequencing of Human Tissues, and Artificial Neural Networks Reveal Potential Therapeutic Targets for Drug Repurposing Against COVID-19 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T10%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20silico%20Analyses%20of%20Immune%20System%20Protein%20Interactome%20Network,%20Single-Cell%20RNA%20Sequencing%20of%20Human%20Tissues,%20and%20Artificial%20Neural%20Networks%20Reveal%20Potential%20Therapeutic%20Targets%20for%20Drug%20Repurposing%20Against%20COVID-19&rft.jtitle=Frontiers%20in%20pharmacology&rft.au=Lopez-Cortes,%20Andres&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2021-02-26&rft.volume=12&rft.spage=598925&rft.pages=598925-&rft.artnum=598925&rft.issn=1663-9812&rft.eissn=1663-9812&rft_id=info:doi/10.3389/fphar.2021.598925&rft_dat=%3Cpubmed_webof%3E33716737%3C/pubmed_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33716737&rft_doaj_id=oai_doaj_org_article_12ff2b56580a4125942a16060c739b52&rfr_iscdi=true |