A Modified Hybrid Conjugate Gradient Method for Unconstrained Optimization
The nonlinear conjugate gradient algorithms are a very effective way in solving large-scale unconstrained optimization problems. Based on some famous previous conjugate gradient methods, a modified hybrid conjugate gradient method was proposed. The proposed method can generate decent directions at e...
Gespeichert in:
Veröffentlicht in: | Journal of mathematics (Hidawi) 2021, Vol.2021, p.1-9, Article 5597863 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The nonlinear conjugate gradient algorithms are a very effective way in solving large-scale unconstrained optimization problems. Based on some famous previous conjugate gradient methods, a modified hybrid conjugate gradient method was proposed. The proposed method can generate decent directions at every iteration independent of any line search. Under the Wolfe line search, the proposed method possesses global convergence. Numerical results show that the modified method is efficient and robust. |
---|---|
ISSN: | 2314-4629 2314-4785 |
DOI: | 10.1155/2021/5597863 |