A Modified Hybrid Conjugate Gradient Method for Unconstrained Optimization

The nonlinear conjugate gradient algorithms are a very effective way in solving large-scale unconstrained optimization problems. Based on some famous previous conjugate gradient methods, a modified hybrid conjugate gradient method was proposed. The proposed method can generate decent directions at e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematics (Hidawi) 2021, Vol.2021, p.1-9, Article 5597863
Hauptverfasser: Fang, Minglei, Wang, Min, Sun, Min, Chen, Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nonlinear conjugate gradient algorithms are a very effective way in solving large-scale unconstrained optimization problems. Based on some famous previous conjugate gradient methods, a modified hybrid conjugate gradient method was proposed. The proposed method can generate decent directions at every iteration independent of any line search. Under the Wolfe line search, the proposed method possesses global convergence. Numerical results show that the modified method is efficient and robust.
ISSN:2314-4629
2314-4785
DOI:10.1155/2021/5597863