Experimental study of flame morphology and size model of a horizontal jet flame impinging a wall

The production and transportation processes of gas fuel may be faced with a safety challenge in the form of a jet fire from pipeline leakage. In actual accidents, sometimes some obstacles may appear in the path of the horizontal jet fire development leading to impingement. The spread mechanism of su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Process safety and environmental protection 2021-03, Vol.147, p.1009-1017
Hauptverfasser: Wang, Chen, Ding, Long, Wan, Huaxian, Ji, Jie, Huang, Yonglong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1017
container_issue
container_start_page 1009
container_title Process safety and environmental protection
container_volume 147
creator Wang, Chen
Ding, Long
Wan, Huaxian
Ji, Jie
Huang, Yonglong
description The production and transportation processes of gas fuel may be faced with a safety challenge in the form of a jet fire from pipeline leakage. In actual accidents, sometimes some obstacles may appear in the path of the horizontal jet fire development leading to impingement. The spread mechanism of such a flame is complex due to the coupling relation of the wall resistance force, buoyancy force and initial momentum. Experiments were conducted to study a horizontal jet flame impinging a wall as a function of fuel initial velocity and nozzle-wall spacing. Results show the transient development of flame morphology and spread mechanism of the steady flame. The upward buoyancy force of the horizontal jet flame gradually increases with the fuel as it moves further away until flame impinges the wall. From the side view, flame morphologies include the flame impinging the wall (up-down spread and up spread stages) and flame not impinging the wall (free spread stage). A counterclockwise flame vortex occurs due to the competition between the upward buoyancy force and downward momentum below the nozzle projection point. From the front view, the flame morphology changes from "U" morphology to "O" morphology. By combining the knowledge of the jet fluid, momentum conservation principle and Newton's second law, a flame size model of the horizontal jet flame impinging the wall is proposed.
doi_str_mv 10.1016/j.psep.2021.01.020
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000623811400083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957582021000288</els_id><sourcerecordid>2506547602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-31fd139049a710aa78aeca0e7fdada103b03d388abda7fae0b3b3c3f99f23adc3</originalsourceid><addsrcrecordid>eNqNkMFq3DAURUVJoZO0P9CVocviyZNkj2XopgxJGwh0067VZ-spkfFYrqRJMvn6yp0hy1C4ICHO0ZMuYx85rDnwzeWwniPNawGCryFHwBu24k1VlbJu1RlbQVs3Za0EvGPnMQ4AwEXDV-z31dNMwe1oSjgWMe3NofC2sCPuqNj5MN_70d8dCpxMEd3zcmZoXBAs7n1wz_6fOFA6OW43u-kuJwOPOI7v2VuLY6QPp_WC_bq--rn9Xt7--Haz_Xpb9lKoVEpuDZctVC02HBAbhdQjUGMNGuQgO5BGKoWdwcYiQSc72UvbtlZINL28YJ-O987B_9lTTHrw-zDlkVrUsKmrZgMiU-JI9cHHGMjqOX8ew0Fz0EuTetBLk3ppUkOOgCx9PkqP1Hkbe0dTTy9irnIjpOK8yjslM63-n966hMn5aev3U8rql6NKuagHR0GfdOMC9Ukb715751_GV574</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506547602</pqid></control><display><type>article</type><title>Experimental study of flame morphology and size model of a horizontal jet flame impinging a wall</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Chen ; Ding, Long ; Wan, Huaxian ; Ji, Jie ; Huang, Yonglong</creator><creatorcontrib>Wang, Chen ; Ding, Long ; Wan, Huaxian ; Ji, Jie ; Huang, Yonglong</creatorcontrib><description>The production and transportation processes of gas fuel may be faced with a safety challenge in the form of a jet fire from pipeline leakage. In actual accidents, sometimes some obstacles may appear in the path of the horizontal jet fire development leading to impingement. The spread mechanism of such a flame is complex due to the coupling relation of the wall resistance force, buoyancy force and initial momentum. Experiments were conducted to study a horizontal jet flame impinging a wall as a function of fuel initial velocity and nozzle-wall spacing. Results show the transient development of flame morphology and spread mechanism of the steady flame. The upward buoyancy force of the horizontal jet flame gradually increases with the fuel as it moves further away until flame impinges the wall. From the side view, flame morphologies include the flame impinging the wall (up-down spread and up spread stages) and flame not impinging the wall (free spread stage). A counterclockwise flame vortex occurs due to the competition between the upward buoyancy force and downward momentum below the nozzle projection point. From the front view, the flame morphology changes from "U" morphology to "O" morphology. By combining the knowledge of the jet fluid, momentum conservation principle and Newton's second law, a flame size model of the horizontal jet flame impinging the wall is proposed.</description><identifier>ISSN: 0957-5820</identifier><identifier>EISSN: 1744-3598</identifier><identifier>DOI: 10.1016/j.psep.2021.01.020</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Buoyancy ; Computational fluid dynamics ; Engineering ; Engineering, Chemical ; Engineering, Environmental ; Flame morphology ; Flame size model ; Fuels ; Horizontal jet flame ; Impinging the wall ; Jet flow ; Momentum ; Morphology ; Nozzle walls ; Production and transportation processes ; Science &amp; Technology ; Technology</subject><ispartof>Process safety and environmental protection, 2021-03, Vol.147, p.1009-1017</ispartof><rights>2021 Institution of Chemical Engineers</rights><rights>Copyright Elsevier Science Ltd. Mar 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000623811400083</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c328t-31fd139049a710aa78aeca0e7fdada103b03d388abda7fae0b3b3c3f99f23adc3</citedby><cites>FETCH-LOGICAL-c328t-31fd139049a710aa78aeca0e7fdada103b03d388abda7fae0b3b3c3f99f23adc3</cites><orcidid>0000-0002-8532-0235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.psep.2021.01.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000</link.rule.ids></links><search><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Ding, Long</creatorcontrib><creatorcontrib>Wan, Huaxian</creatorcontrib><creatorcontrib>Ji, Jie</creatorcontrib><creatorcontrib>Huang, Yonglong</creatorcontrib><title>Experimental study of flame morphology and size model of a horizontal jet flame impinging a wall</title><title>Process safety and environmental protection</title><addtitle>PROCESS SAF ENVIRON</addtitle><description>The production and transportation processes of gas fuel may be faced with a safety challenge in the form of a jet fire from pipeline leakage. In actual accidents, sometimes some obstacles may appear in the path of the horizontal jet fire development leading to impingement. The spread mechanism of such a flame is complex due to the coupling relation of the wall resistance force, buoyancy force and initial momentum. Experiments were conducted to study a horizontal jet flame impinging a wall as a function of fuel initial velocity and nozzle-wall spacing. Results show the transient development of flame morphology and spread mechanism of the steady flame. The upward buoyancy force of the horizontal jet flame gradually increases with the fuel as it moves further away until flame impinges the wall. From the side view, flame morphologies include the flame impinging the wall (up-down spread and up spread stages) and flame not impinging the wall (free spread stage). A counterclockwise flame vortex occurs due to the competition between the upward buoyancy force and downward momentum below the nozzle projection point. From the front view, the flame morphology changes from "U" morphology to "O" morphology. By combining the knowledge of the jet fluid, momentum conservation principle and Newton's second law, a flame size model of the horizontal jet flame impinging the wall is proposed.</description><subject>Buoyancy</subject><subject>Computational fluid dynamics</subject><subject>Engineering</subject><subject>Engineering, Chemical</subject><subject>Engineering, Environmental</subject><subject>Flame morphology</subject><subject>Flame size model</subject><subject>Fuels</subject><subject>Horizontal jet flame</subject><subject>Impinging the wall</subject><subject>Jet flow</subject><subject>Momentum</subject><subject>Morphology</subject><subject>Nozzle walls</subject><subject>Production and transportation processes</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><issn>0957-5820</issn><issn>1744-3598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkMFq3DAURUVJoZO0P9CVocviyZNkj2XopgxJGwh0067VZ-spkfFYrqRJMvn6yp0hy1C4ICHO0ZMuYx85rDnwzeWwniPNawGCryFHwBu24k1VlbJu1RlbQVs3Za0EvGPnMQ4AwEXDV-z31dNMwe1oSjgWMe3NofC2sCPuqNj5MN_70d8dCpxMEd3zcmZoXBAs7n1wz_6fOFA6OW43u-kuJwOPOI7v2VuLY6QPp_WC_bq--rn9Xt7--Haz_Xpb9lKoVEpuDZctVC02HBAbhdQjUGMNGuQgO5BGKoWdwcYiQSc72UvbtlZINL28YJ-O987B_9lTTHrw-zDlkVrUsKmrZgMiU-JI9cHHGMjqOX8ew0Fz0EuTetBLk3ppUkOOgCx9PkqP1Hkbe0dTTy9irnIjpOK8yjslM63-n966hMn5aev3U8rql6NKuagHR0GfdOMC9Ukb715751_GV574</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Wang, Chen</creator><creator>Ding, Long</creator><creator>Wan, Huaxian</creator><creator>Ji, Jie</creator><creator>Huang, Yonglong</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8532-0235</orcidid></search><sort><creationdate>202103</creationdate><title>Experimental study of flame morphology and size model of a horizontal jet flame impinging a wall</title><author>Wang, Chen ; Ding, Long ; Wan, Huaxian ; Ji, Jie ; Huang, Yonglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-31fd139049a710aa78aeca0e7fdada103b03d388abda7fae0b3b3c3f99f23adc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Buoyancy</topic><topic>Computational fluid dynamics</topic><topic>Engineering</topic><topic>Engineering, Chemical</topic><topic>Engineering, Environmental</topic><topic>Flame morphology</topic><topic>Flame size model</topic><topic>Fuels</topic><topic>Horizontal jet flame</topic><topic>Impinging the wall</topic><topic>Jet flow</topic><topic>Momentum</topic><topic>Morphology</topic><topic>Nozzle walls</topic><topic>Production and transportation processes</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Ding, Long</creatorcontrib><creatorcontrib>Wan, Huaxian</creatorcontrib><creatorcontrib>Ji, Jie</creatorcontrib><creatorcontrib>Huang, Yonglong</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Process safety and environmental protection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chen</au><au>Ding, Long</au><au>Wan, Huaxian</au><au>Ji, Jie</au><au>Huang, Yonglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental study of flame morphology and size model of a horizontal jet flame impinging a wall</atitle><jtitle>Process safety and environmental protection</jtitle><stitle>PROCESS SAF ENVIRON</stitle><date>2021-03</date><risdate>2021</risdate><volume>147</volume><spage>1009</spage><epage>1017</epage><pages>1009-1017</pages><issn>0957-5820</issn><eissn>1744-3598</eissn><abstract>The production and transportation processes of gas fuel may be faced with a safety challenge in the form of a jet fire from pipeline leakage. In actual accidents, sometimes some obstacles may appear in the path of the horizontal jet fire development leading to impingement. The spread mechanism of such a flame is complex due to the coupling relation of the wall resistance force, buoyancy force and initial momentum. Experiments were conducted to study a horizontal jet flame impinging a wall as a function of fuel initial velocity and nozzle-wall spacing. Results show the transient development of flame morphology and spread mechanism of the steady flame. The upward buoyancy force of the horizontal jet flame gradually increases with the fuel as it moves further away until flame impinges the wall. From the side view, flame morphologies include the flame impinging the wall (up-down spread and up spread stages) and flame not impinging the wall (free spread stage). A counterclockwise flame vortex occurs due to the competition between the upward buoyancy force and downward momentum below the nozzle projection point. From the front view, the flame morphology changes from "U" morphology to "O" morphology. By combining the knowledge of the jet fluid, momentum conservation principle and Newton's second law, a flame size model of the horizontal jet flame impinging the wall is proposed.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><doi>10.1016/j.psep.2021.01.020</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8532-0235</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-5820
ispartof Process safety and environmental protection, 2021-03, Vol.147, p.1009-1017
issn 0957-5820
1744-3598
language eng
recordid cdi_webofscience_primary_000623811400083
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Buoyancy
Computational fluid dynamics
Engineering
Engineering, Chemical
Engineering, Environmental
Flame morphology
Flame size model
Fuels
Horizontal jet flame
Impinging the wall
Jet flow
Momentum
Morphology
Nozzle walls
Production and transportation processes
Science & Technology
Technology
title Experimental study of flame morphology and size model of a horizontal jet flame impinging a wall
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T09%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20study%20of%20flame%20morphology%20and%20size%20model%20of%20a%20horizontal%20jet%20flame%20impinging%20a%20wall&rft.jtitle=Process%20safety%20and%20environmental%20protection&rft.au=Wang,%20Chen&rft.date=2021-03&rft.volume=147&rft.spage=1009&rft.epage=1017&rft.pages=1009-1017&rft.issn=0957-5820&rft.eissn=1744-3598&rft_id=info:doi/10.1016/j.psep.2021.01.020&rft_dat=%3Cproquest_webof%3E2506547602%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506547602&rft_id=info:pmid/&rft_els_id=S0957582021000288&rfr_iscdi=true