Experimental study of flame morphology and size model of a horizontal jet flame impinging a wall
The production and transportation processes of gas fuel may be faced with a safety challenge in the form of a jet fire from pipeline leakage. In actual accidents, sometimes some obstacles may appear in the path of the horizontal jet fire development leading to impingement. The spread mechanism of su...
Gespeichert in:
Veröffentlicht in: | Process safety and environmental protection 2021-03, Vol.147, p.1009-1017 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1017 |
---|---|
container_issue | |
container_start_page | 1009 |
container_title | Process safety and environmental protection |
container_volume | 147 |
creator | Wang, Chen Ding, Long Wan, Huaxian Ji, Jie Huang, Yonglong |
description | The production and transportation processes of gas fuel may be faced with a safety challenge in the form of a jet fire from pipeline leakage. In actual accidents, sometimes some obstacles may appear in the path of the horizontal jet fire development leading to impingement. The spread mechanism of such a flame is complex due to the coupling relation of the wall resistance force, buoyancy force and initial momentum. Experiments were conducted to study a horizontal jet flame impinging a wall as a function of fuel initial velocity and nozzle-wall spacing. Results show the transient development of flame morphology and spread mechanism of the steady flame. The upward buoyancy force of the horizontal jet flame gradually increases with the fuel as it moves further away until flame impinges the wall. From the side view, flame morphologies include the flame impinging the wall (up-down spread and up spread stages) and flame not impinging the wall (free spread stage). A counterclockwise flame vortex occurs due to the competition between the upward buoyancy force and downward momentum below the nozzle projection point. From the front view, the flame morphology changes from "U" morphology to "O" morphology. By combining the knowledge of the jet fluid, momentum conservation principle and Newton's second law, a flame size model of the horizontal jet flame impinging the wall is proposed. |
doi_str_mv | 10.1016/j.psep.2021.01.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000623811400083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957582021000288</els_id><sourcerecordid>2506547602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-31fd139049a710aa78aeca0e7fdada103b03d388abda7fae0b3b3c3f99f23adc3</originalsourceid><addsrcrecordid>eNqNkMFq3DAURUVJoZO0P9CVocviyZNkj2XopgxJGwh0067VZ-spkfFYrqRJMvn6yp0hy1C4ICHO0ZMuYx85rDnwzeWwniPNawGCryFHwBu24k1VlbJu1RlbQVs3Za0EvGPnMQ4AwEXDV-z31dNMwe1oSjgWMe3NofC2sCPuqNj5MN_70d8dCpxMEd3zcmZoXBAs7n1wz_6fOFA6OW43u-kuJwOPOI7v2VuLY6QPp_WC_bq--rn9Xt7--Haz_Xpb9lKoVEpuDZctVC02HBAbhdQjUGMNGuQgO5BGKoWdwcYiQSc72UvbtlZINL28YJ-O987B_9lTTHrw-zDlkVrUsKmrZgMiU-JI9cHHGMjqOX8ew0Fz0EuTetBLk3ppUkOOgCx9PkqP1Hkbe0dTTy9irnIjpOK8yjslM63-n966hMn5aev3U8rql6NKuagHR0GfdOMC9Ukb715751_GV574</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506547602</pqid></control><display><type>article</type><title>Experimental study of flame morphology and size model of a horizontal jet flame impinging a wall</title><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Chen ; Ding, Long ; Wan, Huaxian ; Ji, Jie ; Huang, Yonglong</creator><creatorcontrib>Wang, Chen ; Ding, Long ; Wan, Huaxian ; Ji, Jie ; Huang, Yonglong</creatorcontrib><description>The production and transportation processes of gas fuel may be faced with a safety challenge in the form of a jet fire from pipeline leakage. In actual accidents, sometimes some obstacles may appear in the path of the horizontal jet fire development leading to impingement. The spread mechanism of such a flame is complex due to the coupling relation of the wall resistance force, buoyancy force and initial momentum. Experiments were conducted to study a horizontal jet flame impinging a wall as a function of fuel initial velocity and nozzle-wall spacing. Results show the transient development of flame morphology and spread mechanism of the steady flame. The upward buoyancy force of the horizontal jet flame gradually increases with the fuel as it moves further away until flame impinges the wall. From the side view, flame morphologies include the flame impinging the wall (up-down spread and up spread stages) and flame not impinging the wall (free spread stage). A counterclockwise flame vortex occurs due to the competition between the upward buoyancy force and downward momentum below the nozzle projection point. From the front view, the flame morphology changes from "U" morphology to "O" morphology. By combining the knowledge of the jet fluid, momentum conservation principle and Newton's second law, a flame size model of the horizontal jet flame impinging the wall is proposed.</description><identifier>ISSN: 0957-5820</identifier><identifier>EISSN: 1744-3598</identifier><identifier>DOI: 10.1016/j.psep.2021.01.020</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Buoyancy ; Computational fluid dynamics ; Engineering ; Engineering, Chemical ; Engineering, Environmental ; Flame morphology ; Flame size model ; Fuels ; Horizontal jet flame ; Impinging the wall ; Jet flow ; Momentum ; Morphology ; Nozzle walls ; Production and transportation processes ; Science & Technology ; Technology</subject><ispartof>Process safety and environmental protection, 2021-03, Vol.147, p.1009-1017</ispartof><rights>2021 Institution of Chemical Engineers</rights><rights>Copyright Elsevier Science Ltd. Mar 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000623811400083</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c328t-31fd139049a710aa78aeca0e7fdada103b03d388abda7fae0b3b3c3f99f23adc3</citedby><cites>FETCH-LOGICAL-c328t-31fd139049a710aa78aeca0e7fdada103b03d388abda7fae0b3b3c3f99f23adc3</cites><orcidid>0000-0002-8532-0235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.psep.2021.01.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000</link.rule.ids></links><search><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Ding, Long</creatorcontrib><creatorcontrib>Wan, Huaxian</creatorcontrib><creatorcontrib>Ji, Jie</creatorcontrib><creatorcontrib>Huang, Yonglong</creatorcontrib><title>Experimental study of flame morphology and size model of a horizontal jet flame impinging a wall</title><title>Process safety and environmental protection</title><addtitle>PROCESS SAF ENVIRON</addtitle><description>The production and transportation processes of gas fuel may be faced with a safety challenge in the form of a jet fire from pipeline leakage. In actual accidents, sometimes some obstacles may appear in the path of the horizontal jet fire development leading to impingement. The spread mechanism of such a flame is complex due to the coupling relation of the wall resistance force, buoyancy force and initial momentum. Experiments were conducted to study a horizontal jet flame impinging a wall as a function of fuel initial velocity and nozzle-wall spacing. Results show the transient development of flame morphology and spread mechanism of the steady flame. The upward buoyancy force of the horizontal jet flame gradually increases with the fuel as it moves further away until flame impinges the wall. From the side view, flame morphologies include the flame impinging the wall (up-down spread and up spread stages) and flame not impinging the wall (free spread stage). A counterclockwise flame vortex occurs due to the competition between the upward buoyancy force and downward momentum below the nozzle projection point. From the front view, the flame morphology changes from "U" morphology to "O" morphology. By combining the knowledge of the jet fluid, momentum conservation principle and Newton's second law, a flame size model of the horizontal jet flame impinging the wall is proposed.</description><subject>Buoyancy</subject><subject>Computational fluid dynamics</subject><subject>Engineering</subject><subject>Engineering, Chemical</subject><subject>Engineering, Environmental</subject><subject>Flame morphology</subject><subject>Flame size model</subject><subject>Fuels</subject><subject>Horizontal jet flame</subject><subject>Impinging the wall</subject><subject>Jet flow</subject><subject>Momentum</subject><subject>Morphology</subject><subject>Nozzle walls</subject><subject>Production and transportation processes</subject><subject>Science & Technology</subject><subject>Technology</subject><issn>0957-5820</issn><issn>1744-3598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkMFq3DAURUVJoZO0P9CVocviyZNkj2XopgxJGwh0067VZ-spkfFYrqRJMvn6yp0hy1C4ICHO0ZMuYx85rDnwzeWwniPNawGCryFHwBu24k1VlbJu1RlbQVs3Za0EvGPnMQ4AwEXDV-z31dNMwe1oSjgWMe3NofC2sCPuqNj5MN_70d8dCpxMEd3zcmZoXBAs7n1wz_6fOFA6OW43u-kuJwOPOI7v2VuLY6QPp_WC_bq--rn9Xt7--Haz_Xpb9lKoVEpuDZctVC02HBAbhdQjUGMNGuQgO5BGKoWdwcYiQSc72UvbtlZINL28YJ-O987B_9lTTHrw-zDlkVrUsKmrZgMiU-JI9cHHGMjqOX8ew0Fz0EuTetBLk3ppUkOOgCx9PkqP1Hkbe0dTTy9irnIjpOK8yjslM63-n966hMn5aev3U8rql6NKuagHR0GfdOMC9Ukb715751_GV574</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Wang, Chen</creator><creator>Ding, Long</creator><creator>Wan, Huaxian</creator><creator>Ji, Jie</creator><creator>Huang, Yonglong</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8532-0235</orcidid></search><sort><creationdate>202103</creationdate><title>Experimental study of flame morphology and size model of a horizontal jet flame impinging a wall</title><author>Wang, Chen ; Ding, Long ; Wan, Huaxian ; Ji, Jie ; Huang, Yonglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-31fd139049a710aa78aeca0e7fdada103b03d388abda7fae0b3b3c3f99f23adc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Buoyancy</topic><topic>Computational fluid dynamics</topic><topic>Engineering</topic><topic>Engineering, Chemical</topic><topic>Engineering, Environmental</topic><topic>Flame morphology</topic><topic>Flame size model</topic><topic>Fuels</topic><topic>Horizontal jet flame</topic><topic>Impinging the wall</topic><topic>Jet flow</topic><topic>Momentum</topic><topic>Morphology</topic><topic>Nozzle walls</topic><topic>Production and transportation processes</topic><topic>Science & Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Ding, Long</creatorcontrib><creatorcontrib>Wan, Huaxian</creatorcontrib><creatorcontrib>Ji, Jie</creatorcontrib><creatorcontrib>Huang, Yonglong</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Process safety and environmental protection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chen</au><au>Ding, Long</au><au>Wan, Huaxian</au><au>Ji, Jie</au><au>Huang, Yonglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental study of flame morphology and size model of a horizontal jet flame impinging a wall</atitle><jtitle>Process safety and environmental protection</jtitle><stitle>PROCESS SAF ENVIRON</stitle><date>2021-03</date><risdate>2021</risdate><volume>147</volume><spage>1009</spage><epage>1017</epage><pages>1009-1017</pages><issn>0957-5820</issn><eissn>1744-3598</eissn><abstract>The production and transportation processes of gas fuel may be faced with a safety challenge in the form of a jet fire from pipeline leakage. In actual accidents, sometimes some obstacles may appear in the path of the horizontal jet fire development leading to impingement. The spread mechanism of such a flame is complex due to the coupling relation of the wall resistance force, buoyancy force and initial momentum. Experiments were conducted to study a horizontal jet flame impinging a wall as a function of fuel initial velocity and nozzle-wall spacing. Results show the transient development of flame morphology and spread mechanism of the steady flame. The upward buoyancy force of the horizontal jet flame gradually increases with the fuel as it moves further away until flame impinges the wall. From the side view, flame morphologies include the flame impinging the wall (up-down spread and up spread stages) and flame not impinging the wall (free spread stage). A counterclockwise flame vortex occurs due to the competition between the upward buoyancy force and downward momentum below the nozzle projection point. From the front view, the flame morphology changes from "U" morphology to "O" morphology. By combining the knowledge of the jet fluid, momentum conservation principle and Newton's second law, a flame size model of the horizontal jet flame impinging the wall is proposed.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><doi>10.1016/j.psep.2021.01.020</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8532-0235</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-5820 |
ispartof | Process safety and environmental protection, 2021-03, Vol.147, p.1009-1017 |
issn | 0957-5820 1744-3598 |
language | eng |
recordid | cdi_webofscience_primary_000623811400083 |
source | Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier) |
subjects | Buoyancy Computational fluid dynamics Engineering Engineering, Chemical Engineering, Environmental Flame morphology Flame size model Fuels Horizontal jet flame Impinging the wall Jet flow Momentum Morphology Nozzle walls Production and transportation processes Science & Technology Technology |
title | Experimental study of flame morphology and size model of a horizontal jet flame impinging a wall |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T09%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20study%20of%20flame%20morphology%20and%20size%20model%20of%20a%20horizontal%20jet%20flame%20impinging%20a%20wall&rft.jtitle=Process%20safety%20and%20environmental%20protection&rft.au=Wang,%20Chen&rft.date=2021-03&rft.volume=147&rft.spage=1009&rft.epage=1017&rft.pages=1009-1017&rft.issn=0957-5820&rft.eissn=1744-3598&rft_id=info:doi/10.1016/j.psep.2021.01.020&rft_dat=%3Cproquest_webof%3E2506547602%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506547602&rft_id=info:pmid/&rft_els_id=S0957582021000288&rfr_iscdi=true |