Data-driven fault diagnosis method for the safe and stable operation of solid oxide fuel cells system

Solid oxide fuel cell system is complex with multiple variables strongly coupled. Once a fault occurs, if it cannot be found in time, the initial minor fault may slowly evolve and spread to subsequent components. Therefore, fault diagnosis is a promising approach to guarantee the stability of the sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2021-04, Vol.490, p.229561, Article 229561
Hauptverfasser: Zheng, Yi, Wu, Xiao-long, Zhao, Dongqi, Xu, Yuan-wu, Wang, Beibei, Zu, Yanmin, Li, Dong, Jiang, Jianhua, Jiang, Chang, Fu, Xiaowei, Li, Xi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 229561
container_title Journal of power sources
container_volume 490
creator Zheng, Yi
Wu, Xiao-long
Zhao, Dongqi
Xu, Yuan-wu
Wang, Beibei
Zu, Yanmin
Li, Dong
Jiang, Jianhua
Jiang, Chang
Fu, Xiaowei
Li, Xi
description Solid oxide fuel cell system is complex with multiple variables strongly coupled. Once a fault occurs, if it cannot be found in time, the initial minor fault may slowly evolve and spread to subsequent components. Therefore, fault diagnosis is a promising approach to guarantee the stability of the system. In this paper, the impact of air leakage and fuel starvation is investigated. To diagnose the two types of faults, a novel data-driven online fault diagnosis method based on principal component analysis and support vector machine is developed. Data comes from the entire stage of the solid oxide fuel cell system experiment. The results show that the proposed method can effectively identify the air leakage and fuel starvation fault in real time. Through comparison with traditional machine learning methods, this method shows higher accuracy and better generalization performance. Moreover, it combines prior knowledge and statistical characteristics to extract effective features, thereby reducing the calculation burden. Furthermore, with proper modifications, the proposed method can be extended to other types of solid oxide fuel cell system faults, which is significant in enhancing the reliability of the system. •A data-driven fault diagnosis method is developed in SOFC system.•The impact of air leakage and fuel starvation in SOFC system is investigated.•Data comes from the entire stage of the SOFC system experimental platform.•Prior knowledge and statistical characteristics are combined to select features.•The performance of the proposed model is comprehensively evaluated and compared.
doi_str_mv 10.1016/j.jpowsour.2021.229561
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000621172800004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775321001087</els_id><sourcerecordid>S0378775321001087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-40219f846c229800478ebecc38fd62cf2aa74ff46387b219cbe615799ef75b343</originalsourceid><addsrcrecordid>eNqNkEtPAyEURonRxFr9C4a9mRGYB9Odpj6TJm50TRi4WCbToQHa6r-XOtWtrth85-ZwELqkJKeE1tdd3q3dLriNzxlhNGdsVtX0CE1ow4uM8ao6RhNS8CbjvCpO0VkIHSGEUk4mCO5klJn2dgsDNnLTR6ytfB9csAGvIC6dxsZ5HJeAgzSA5aBxiLLtAbs1eBmtG7AzOLjeauw-rAZsNtBjBX0fcPgMEVbn6MTIPsDF4Z2it4f71_lTtnh5fJ7fLjJVUBazMunPTFPWKv2hIaTkDbSgVNEYXTNlmJS8NKasi4a3aapaqGnFZzMwvGqLspiieryrvAvBgxFrb1fSfwpKxD6W6MRPLLGPJcZYCbwawR20zgRlYVDwC6daNUu9WHJKVmnd_H89t_E70txthpjQmxGFlGFrwYsDrq0HFYV29i_XL24imLo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data-driven fault diagnosis method for the safe and stable operation of solid oxide fuel cells system</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Zheng, Yi ; Wu, Xiao-long ; Zhao, Dongqi ; Xu, Yuan-wu ; Wang, Beibei ; Zu, Yanmin ; Li, Dong ; Jiang, Jianhua ; Jiang, Chang ; Fu, Xiaowei ; Li, Xi</creator><creatorcontrib>Zheng, Yi ; Wu, Xiao-long ; Zhao, Dongqi ; Xu, Yuan-wu ; Wang, Beibei ; Zu, Yanmin ; Li, Dong ; Jiang, Jianhua ; Jiang, Chang ; Fu, Xiaowei ; Li, Xi</creatorcontrib><description>Solid oxide fuel cell system is complex with multiple variables strongly coupled. Once a fault occurs, if it cannot be found in time, the initial minor fault may slowly evolve and spread to subsequent components. Therefore, fault diagnosis is a promising approach to guarantee the stability of the system. In this paper, the impact of air leakage and fuel starvation is investigated. To diagnose the two types of faults, a novel data-driven online fault diagnosis method based on principal component analysis and support vector machine is developed. Data comes from the entire stage of the solid oxide fuel cell system experiment. The results show that the proposed method can effectively identify the air leakage and fuel starvation fault in real time. Through comparison with traditional machine learning methods, this method shows higher accuracy and better generalization performance. Moreover, it combines prior knowledge and statistical characteristics to extract effective features, thereby reducing the calculation burden. Furthermore, with proper modifications, the proposed method can be extended to other types of solid oxide fuel cell system faults, which is significant in enhancing the reliability of the system. •A data-driven fault diagnosis method is developed in SOFC system.•The impact of air leakage and fuel starvation in SOFC system is investigated.•Data comes from the entire stage of the SOFC system experimental platform.•Prior knowledge and statistical characteristics are combined to select features.•The performance of the proposed model is comprehensively evaluated and compared.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2021.229561</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Air leakage ; Chemistry ; Chemistry, Physical ; Electrochemistry ; Energy &amp; Fuels ; Fuel starvation ; Materials Science ; Materials Science, Multidisciplinary ; Physical Sciences ; Principal component analysis ; Science &amp; Technology ; Solid oxide fuel cell system ; Support vector machine ; Technology</subject><ispartof>Journal of power sources, 2021-04, Vol.490, p.229561, Article 229561</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>34</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000621172800004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c312t-40219f846c229800478ebecc38fd62cf2aa74ff46387b219cbe615799ef75b343</citedby><cites>FETCH-LOGICAL-c312t-40219f846c229800478ebecc38fd62cf2aa74ff46387b219cbe615799ef75b343</cites><orcidid>0000-0001-9981-1169 ; 0000-0001-6396-792X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2021.229561$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000</link.rule.ids></links><search><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Wu, Xiao-long</creatorcontrib><creatorcontrib>Zhao, Dongqi</creatorcontrib><creatorcontrib>Xu, Yuan-wu</creatorcontrib><creatorcontrib>Wang, Beibei</creatorcontrib><creatorcontrib>Zu, Yanmin</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Jiang, Jianhua</creatorcontrib><creatorcontrib>Jiang, Chang</creatorcontrib><creatorcontrib>Fu, Xiaowei</creatorcontrib><creatorcontrib>Li, Xi</creatorcontrib><title>Data-driven fault diagnosis method for the safe and stable operation of solid oxide fuel cells system</title><title>Journal of power sources</title><addtitle>J POWER SOURCES</addtitle><description>Solid oxide fuel cell system is complex with multiple variables strongly coupled. Once a fault occurs, if it cannot be found in time, the initial minor fault may slowly evolve and spread to subsequent components. Therefore, fault diagnosis is a promising approach to guarantee the stability of the system. In this paper, the impact of air leakage and fuel starvation is investigated. To diagnose the two types of faults, a novel data-driven online fault diagnosis method based on principal component analysis and support vector machine is developed. Data comes from the entire stage of the solid oxide fuel cell system experiment. The results show that the proposed method can effectively identify the air leakage and fuel starvation fault in real time. Through comparison with traditional machine learning methods, this method shows higher accuracy and better generalization performance. Moreover, it combines prior knowledge and statistical characteristics to extract effective features, thereby reducing the calculation burden. Furthermore, with proper modifications, the proposed method can be extended to other types of solid oxide fuel cell system faults, which is significant in enhancing the reliability of the system. •A data-driven fault diagnosis method is developed in SOFC system.•The impact of air leakage and fuel starvation in SOFC system is investigated.•Data comes from the entire stage of the SOFC system experimental platform.•Prior knowledge and statistical characteristics are combined to select features.•The performance of the proposed model is comprehensively evaluated and compared.</description><subject>Air leakage</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Electrochemistry</subject><subject>Energy &amp; Fuels</subject><subject>Fuel starvation</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Physical Sciences</subject><subject>Principal component analysis</subject><subject>Science &amp; Technology</subject><subject>Solid oxide fuel cell system</subject><subject>Support vector machine</subject><subject>Technology</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkEtPAyEURonRxFr9C4a9mRGYB9Odpj6TJm50TRi4WCbToQHa6r-XOtWtrth85-ZwELqkJKeE1tdd3q3dLriNzxlhNGdsVtX0CE1ow4uM8ao6RhNS8CbjvCpO0VkIHSGEUk4mCO5klJn2dgsDNnLTR6ytfB9csAGvIC6dxsZ5HJeAgzSA5aBxiLLtAbs1eBmtG7AzOLjeauw-rAZsNtBjBX0fcPgMEVbn6MTIPsDF4Z2it4f71_lTtnh5fJ7fLjJVUBazMunPTFPWKv2hIaTkDbSgVNEYXTNlmJS8NKasi4a3aapaqGnFZzMwvGqLspiieryrvAvBgxFrb1fSfwpKxD6W6MRPLLGPJcZYCbwawR20zgRlYVDwC6daNUu9WHJKVmnd_H89t_E70txthpjQmxGFlGFrwYsDrq0HFYV29i_XL24imLo</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Zheng, Yi</creator><creator>Wu, Xiao-long</creator><creator>Zhao, Dongqi</creator><creator>Xu, Yuan-wu</creator><creator>Wang, Beibei</creator><creator>Zu, Yanmin</creator><creator>Li, Dong</creator><creator>Jiang, Jianhua</creator><creator>Jiang, Chang</creator><creator>Fu, Xiaowei</creator><creator>Li, Xi</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9981-1169</orcidid><orcidid>https://orcid.org/0000-0001-6396-792X</orcidid></search><sort><creationdate>20210401</creationdate><title>Data-driven fault diagnosis method for the safe and stable operation of solid oxide fuel cells system</title><author>Zheng, Yi ; Wu, Xiao-long ; Zhao, Dongqi ; Xu, Yuan-wu ; Wang, Beibei ; Zu, Yanmin ; Li, Dong ; Jiang, Jianhua ; Jiang, Chang ; Fu, Xiaowei ; Li, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-40219f846c229800478ebecc38fd62cf2aa74ff46387b219cbe615799ef75b343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air leakage</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Electrochemistry</topic><topic>Energy &amp; Fuels</topic><topic>Fuel starvation</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Physical Sciences</topic><topic>Principal component analysis</topic><topic>Science &amp; Technology</topic><topic>Solid oxide fuel cell system</topic><topic>Support vector machine</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Wu, Xiao-long</creatorcontrib><creatorcontrib>Zhao, Dongqi</creatorcontrib><creatorcontrib>Xu, Yuan-wu</creatorcontrib><creatorcontrib>Wang, Beibei</creatorcontrib><creatorcontrib>Zu, Yanmin</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Jiang, Jianhua</creatorcontrib><creatorcontrib>Jiang, Chang</creatorcontrib><creatorcontrib>Fu, Xiaowei</creatorcontrib><creatorcontrib>Li, Xi</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yi</au><au>Wu, Xiao-long</au><au>Zhao, Dongqi</au><au>Xu, Yuan-wu</au><au>Wang, Beibei</au><au>Zu, Yanmin</au><au>Li, Dong</au><au>Jiang, Jianhua</au><au>Jiang, Chang</au><au>Fu, Xiaowei</au><au>Li, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven fault diagnosis method for the safe and stable operation of solid oxide fuel cells system</atitle><jtitle>Journal of power sources</jtitle><stitle>J POWER SOURCES</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>490</volume><spage>229561</spage><pages>229561-</pages><artnum>229561</artnum><issn>0378-7753</issn><eissn>1873-2755</eissn><abstract>Solid oxide fuel cell system is complex with multiple variables strongly coupled. Once a fault occurs, if it cannot be found in time, the initial minor fault may slowly evolve and spread to subsequent components. Therefore, fault diagnosis is a promising approach to guarantee the stability of the system. In this paper, the impact of air leakage and fuel starvation is investigated. To diagnose the two types of faults, a novel data-driven online fault diagnosis method based on principal component analysis and support vector machine is developed. Data comes from the entire stage of the solid oxide fuel cell system experiment. The results show that the proposed method can effectively identify the air leakage and fuel starvation fault in real time. Through comparison with traditional machine learning methods, this method shows higher accuracy and better generalization performance. Moreover, it combines prior knowledge and statistical characteristics to extract effective features, thereby reducing the calculation burden. Furthermore, with proper modifications, the proposed method can be extended to other types of solid oxide fuel cell system faults, which is significant in enhancing the reliability of the system. •A data-driven fault diagnosis method is developed in SOFC system.•The impact of air leakage and fuel starvation in SOFC system is investigated.•Data comes from the entire stage of the SOFC system experimental platform.•Prior knowledge and statistical characteristics are combined to select features.•The performance of the proposed model is comprehensively evaluated and compared.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2021.229561</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9981-1169</orcidid><orcidid>https://orcid.org/0000-0001-6396-792X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2021-04, Vol.490, p.229561, Article 229561
issn 0378-7753
1873-2755
language eng
recordid cdi_webofscience_primary_000621172800004
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Air leakage
Chemistry
Chemistry, Physical
Electrochemistry
Energy & Fuels
Fuel starvation
Materials Science
Materials Science, Multidisciplinary
Physical Sciences
Principal component analysis
Science & Technology
Solid oxide fuel cell system
Support vector machine
Technology
title Data-driven fault diagnosis method for the safe and stable operation of solid oxide fuel cells system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T19%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20fault%20diagnosis%20method%20for%20the%20safe%20and%20stable%20operation%20of%20solid%20oxide%20fuel%20cells%20system&rft.jtitle=Journal%20of%20power%20sources&rft.au=Zheng,%20Yi&rft.date=2021-04-01&rft.volume=490&rft.spage=229561&rft.pages=229561-&rft.artnum=229561&rft.issn=0378-7753&rft.eissn=1873-2755&rft_id=info:doi/10.1016/j.jpowsour.2021.229561&rft_dat=%3Celsevier_webof%3ES0378775321001087%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0378775321001087&rfr_iscdi=true