Transient phase fraction and dislocation density estimation from in-situ X-ray diffraction data with a low signal-to-noise ratio using a Bayesian approach to the Rietveld analysis

We describe the analysis of in-situ HT-XRD data of a dual phase stainless steel exposed to a complex thermal cycle of heating, holding and cooling. For the conditions used only low quality diffraction data could be collected. Peak positions, peak areas and peak broadening are modeled by the Rietveld...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials characterization 2021-02, Vol.172, p.110860, Article 110860
Hauptverfasser: Wiessner, Manfred, Angerer, Paul, van der Zwaag, Sybrand, Gamsjäger, Ernst
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110860
container_title Materials characterization
container_volume 172
creator Wiessner, Manfred
Angerer, Paul
van der Zwaag, Sybrand
Gamsjäger, Ernst
description We describe the analysis of in-situ HT-XRD data of a dual phase stainless steel exposed to a complex thermal cycle of heating, holding and cooling. For the conditions used only low quality diffraction data could be collected. Peak positions, peak areas and peak broadening are modeled by the Rietveld method. The low signal-to noise ratio and the presence of artificial peaks due to tube tails complicate the data evaluation. In a first attempt the parameters are refined by a local optimization procedure (e.g. Levenberg-Marquardt). However, this procedure fails by being caught in one of several local minima. Next, a Bayesian approach with a Markov Chain Monte Carlo (MCMC) algorithm is used as a global optimization procedure to refine the simulated Rietveld diffractograms. Accurate estimates of the evolution of the phase fractions and dislocation densities in martensite and austenite during all stages of the thermal cycle are obtained by this MCMC algorithm. While an approach based on multivariate second order Taylor series completely underestimates the error, the uncertainties in the model parameters could be estimated appropriately from histograms obtained by the MCMC method. •The simulated diffractograms are analyzed by a Markov Chain Monte Carlo method using Bayesian statistics.•Global optimization as a tool to deal with low signal-to-noise ratio data.•The errors of the dislocation densities cannot be obtained from the covariance matrix.•Distributions of the model parameters (e.g. determined by MCMC) provide a clear error estimation.
doi_str_mv 10.1016/j.matchar.2020.110860
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000620957700001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044580320323317</els_id><sourcerecordid>S1044580320323317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-8f3025ca2f353945afc739d2c1956e64630062eb77b2b86aca183b2706b0a3953</originalsourceid><addsrcrecordid>eNqNkNuKHCEQhpuQQDabPELA--DEQ2vbVyEZcoKFQNhA7qTa1m2HHh3U2aGfa18wzvawt9krtfi_qvJrmveUbCih8uNus4diJkgbRlitUaIkedFcUdVx3FLVv6x30rZYKMJfN29y3hFCpKLdVfNwmyBkb0NBhwmyRS6BKT4GBGFEo89zNPD4Hm3NlQXZXPx-LbkU98gHXOtH9BcnWCrhnjqMUACdfJkQoDmeUPZ3AWZcIg7R11Hp3AUdsw93NfEFFps91MGHQ4pgJlQiKpNFv70t93Ye60YwL9nnt80rB3O27y7ndfPn29fb7Q988-v7z-3nG2y4kAUrxwkTBpjjgvetAGc63o_M0F5IK1vJqwRmh64b2KAkGKCKD6wjciDAe8GvG7H2NSnmnKzTh1S_nhZNiT6b1zt9Ma_P5vVqvnIfVu5kh-iyqXaNfWLP6hnpRdfVG6E1rZ6f3vryqH4bj6FU9NOK2mrh3tukL_jokzVFj9H_Z9V_MPizxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transient phase fraction and dislocation density estimation from in-situ X-ray diffraction data with a low signal-to-noise ratio using a Bayesian approach to the Rietveld analysis</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Wiessner, Manfred ; Angerer, Paul ; van der Zwaag, Sybrand ; Gamsjäger, Ernst</creator><creatorcontrib>Wiessner, Manfred ; Angerer, Paul ; van der Zwaag, Sybrand ; Gamsjäger, Ernst</creatorcontrib><description>We describe the analysis of in-situ HT-XRD data of a dual phase stainless steel exposed to a complex thermal cycle of heating, holding and cooling. For the conditions used only low quality diffraction data could be collected. Peak positions, peak areas and peak broadening are modeled by the Rietveld method. The low signal-to noise ratio and the presence of artificial peaks due to tube tails complicate the data evaluation. In a first attempt the parameters are refined by a local optimization procedure (e.g. Levenberg-Marquardt). However, this procedure fails by being caught in one of several local minima. Next, a Bayesian approach with a Markov Chain Monte Carlo (MCMC) algorithm is used as a global optimization procedure to refine the simulated Rietveld diffractograms. Accurate estimates of the evolution of the phase fractions and dislocation densities in martensite and austenite during all stages of the thermal cycle are obtained by this MCMC algorithm. While an approach based on multivariate second order Taylor series completely underestimates the error, the uncertainties in the model parameters could be estimated appropriately from histograms obtained by the MCMC method. •The simulated diffractograms are analyzed by a Markov Chain Monte Carlo method using Bayesian statistics.•Global optimization as a tool to deal with low signal-to-noise ratio data.•The errors of the dislocation densities cannot be obtained from the covariance matrix.•Distributions of the model parameters (e.g. determined by MCMC) provide a clear error estimation.</description><identifier>ISSN: 1044-5803</identifier><identifier>EISSN: 1873-4189</identifier><identifier>DOI: 10.1016/j.matchar.2020.110860</identifier><language>eng</language><publisher>NEW YORK: Elsevier Inc</publisher><subject>Bayesian statistics ; Dislocation densities ; Levenberg-Marquardt ; Markov Chain Monte Carlo ; Materials Science ; Materials Science, Characterization &amp; Testing ; Materials Science, Multidisciplinary ; Metallurgy &amp; Metallurgical Engineering ; Rietveld method ; Science &amp; Technology ; Stainless steels ; Technology</subject><ispartof>Materials characterization, 2021-02, Vol.172, p.110860, Article 110860</ispartof><rights>2020 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000620957700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c356t-8f3025ca2f353945afc739d2c1956e64630062eb77b2b86aca183b2706b0a3953</citedby><cites>FETCH-LOGICAL-c356t-8f3025ca2f353945afc739d2c1956e64630062eb77b2b86aca183b2706b0a3953</cites><orcidid>0000-0003-4885-7858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matchar.2020.110860$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000</link.rule.ids></links><search><creatorcontrib>Wiessner, Manfred</creatorcontrib><creatorcontrib>Angerer, Paul</creatorcontrib><creatorcontrib>van der Zwaag, Sybrand</creatorcontrib><creatorcontrib>Gamsjäger, Ernst</creatorcontrib><title>Transient phase fraction and dislocation density estimation from in-situ X-ray diffraction data with a low signal-to-noise ratio using a Bayesian approach to the Rietveld analysis</title><title>Materials characterization</title><addtitle>MATER CHARACT</addtitle><description>We describe the analysis of in-situ HT-XRD data of a dual phase stainless steel exposed to a complex thermal cycle of heating, holding and cooling. For the conditions used only low quality diffraction data could be collected. Peak positions, peak areas and peak broadening are modeled by the Rietveld method. The low signal-to noise ratio and the presence of artificial peaks due to tube tails complicate the data evaluation. In a first attempt the parameters are refined by a local optimization procedure (e.g. Levenberg-Marquardt). However, this procedure fails by being caught in one of several local minima. Next, a Bayesian approach with a Markov Chain Monte Carlo (MCMC) algorithm is used as a global optimization procedure to refine the simulated Rietveld diffractograms. Accurate estimates of the evolution of the phase fractions and dislocation densities in martensite and austenite during all stages of the thermal cycle are obtained by this MCMC algorithm. While an approach based on multivariate second order Taylor series completely underestimates the error, the uncertainties in the model parameters could be estimated appropriately from histograms obtained by the MCMC method. •The simulated diffractograms are analyzed by a Markov Chain Monte Carlo method using Bayesian statistics.•Global optimization as a tool to deal with low signal-to-noise ratio data.•The errors of the dislocation densities cannot be obtained from the covariance matrix.•Distributions of the model parameters (e.g. determined by MCMC) provide a clear error estimation.</description><subject>Bayesian statistics</subject><subject>Dislocation densities</subject><subject>Levenberg-Marquardt</subject><subject>Markov Chain Monte Carlo</subject><subject>Materials Science</subject><subject>Materials Science, Characterization &amp; Testing</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metallurgy &amp; Metallurgical Engineering</subject><subject>Rietveld method</subject><subject>Science &amp; Technology</subject><subject>Stainless steels</subject><subject>Technology</subject><issn>1044-5803</issn><issn>1873-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkNuKHCEQhpuQQDabPELA--DEQ2vbVyEZcoKFQNhA7qTa1m2HHh3U2aGfa18wzvawt9krtfi_qvJrmveUbCih8uNus4diJkgbRlitUaIkedFcUdVx3FLVv6x30rZYKMJfN29y3hFCpKLdVfNwmyBkb0NBhwmyRS6BKT4GBGFEo89zNPD4Hm3NlQXZXPx-LbkU98gHXOtH9BcnWCrhnjqMUACdfJkQoDmeUPZ3AWZcIg7R11Hp3AUdsw93NfEFFps91MGHQ4pgJlQiKpNFv70t93Ye60YwL9nnt80rB3O27y7ndfPn29fb7Q988-v7z-3nG2y4kAUrxwkTBpjjgvetAGc63o_M0F5IK1vJqwRmh64b2KAkGKCKD6wjciDAe8GvG7H2NSnmnKzTh1S_nhZNiT6b1zt9Ma_P5vVqvnIfVu5kh-iyqXaNfWLP6hnpRdfVG6E1rZ6f3vryqH4bj6FU9NOK2mrh3tukL_jokzVFj9H_Z9V_MPizxQ</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Wiessner, Manfred</creator><creator>Angerer, Paul</creator><creator>van der Zwaag, Sybrand</creator><creator>Gamsjäger, Ernst</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4885-7858</orcidid></search><sort><creationdate>202102</creationdate><title>Transient phase fraction and dislocation density estimation from in-situ X-ray diffraction data with a low signal-to-noise ratio using a Bayesian approach to the Rietveld analysis</title><author>Wiessner, Manfred ; Angerer, Paul ; van der Zwaag, Sybrand ; Gamsjäger, Ernst</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-8f3025ca2f353945afc739d2c1956e64630062eb77b2b86aca183b2706b0a3953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian statistics</topic><topic>Dislocation densities</topic><topic>Levenberg-Marquardt</topic><topic>Markov Chain Monte Carlo</topic><topic>Materials Science</topic><topic>Materials Science, Characterization &amp; Testing</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metallurgy &amp; Metallurgical Engineering</topic><topic>Rietveld method</topic><topic>Science &amp; Technology</topic><topic>Stainless steels</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wiessner, Manfred</creatorcontrib><creatorcontrib>Angerer, Paul</creatorcontrib><creatorcontrib>van der Zwaag, Sybrand</creatorcontrib><creatorcontrib>Gamsjäger, Ernst</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Materials characterization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiessner, Manfred</au><au>Angerer, Paul</au><au>van der Zwaag, Sybrand</au><au>Gamsjäger, Ernst</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient phase fraction and dislocation density estimation from in-situ X-ray diffraction data with a low signal-to-noise ratio using a Bayesian approach to the Rietveld analysis</atitle><jtitle>Materials characterization</jtitle><stitle>MATER CHARACT</stitle><date>2021-02</date><risdate>2021</risdate><volume>172</volume><spage>110860</spage><pages>110860-</pages><artnum>110860</artnum><issn>1044-5803</issn><eissn>1873-4189</eissn><abstract>We describe the analysis of in-situ HT-XRD data of a dual phase stainless steel exposed to a complex thermal cycle of heating, holding and cooling. For the conditions used only low quality diffraction data could be collected. Peak positions, peak areas and peak broadening are modeled by the Rietveld method. The low signal-to noise ratio and the presence of artificial peaks due to tube tails complicate the data evaluation. In a first attempt the parameters are refined by a local optimization procedure (e.g. Levenberg-Marquardt). However, this procedure fails by being caught in one of several local minima. Next, a Bayesian approach with a Markov Chain Monte Carlo (MCMC) algorithm is used as a global optimization procedure to refine the simulated Rietveld diffractograms. Accurate estimates of the evolution of the phase fractions and dislocation densities in martensite and austenite during all stages of the thermal cycle are obtained by this MCMC algorithm. While an approach based on multivariate second order Taylor series completely underestimates the error, the uncertainties in the model parameters could be estimated appropriately from histograms obtained by the MCMC method. •The simulated diffractograms are analyzed by a Markov Chain Monte Carlo method using Bayesian statistics.•Global optimization as a tool to deal with low signal-to-noise ratio data.•The errors of the dislocation densities cannot be obtained from the covariance matrix.•Distributions of the model parameters (e.g. determined by MCMC) provide a clear error estimation.</abstract><cop>NEW YORK</cop><pub>Elsevier Inc</pub><doi>10.1016/j.matchar.2020.110860</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4885-7858</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1044-5803
ispartof Materials characterization, 2021-02, Vol.172, p.110860, Article 110860
issn 1044-5803
1873-4189
language eng
recordid cdi_webofscience_primary_000620957700001
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Bayesian statistics
Dislocation densities
Levenberg-Marquardt
Markov Chain Monte Carlo
Materials Science
Materials Science, Characterization & Testing
Materials Science, Multidisciplinary
Metallurgy & Metallurgical Engineering
Rietveld method
Science & Technology
Stainless steels
Technology
title Transient phase fraction and dislocation density estimation from in-situ X-ray diffraction data with a low signal-to-noise ratio using a Bayesian approach to the Rietveld analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T04%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20phase%20fraction%20and%20dislocation%20density%20estimation%20from%20in-situ%20X-ray%20diffraction%20data%20with%20a%20low%20signal-to-noise%20ratio%20using%20a%20Bayesian%20approach%20to%20the%20Rietveld%20analysis&rft.jtitle=Materials%20characterization&rft.au=Wiessner,%20Manfred&rft.date=2021-02&rft.volume=172&rft.spage=110860&rft.pages=110860-&rft.artnum=110860&rft.issn=1044-5803&rft.eissn=1873-4189&rft_id=info:doi/10.1016/j.matchar.2020.110860&rft_dat=%3Celsevier_webof%3ES1044580320323317%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1044580320323317&rfr_iscdi=true