Real-Time Monitoring Mitochondrial Viscosity during Mitophagy Using a Mitochondria-Immobilized Near-Infrared Aggregation-Induced Emission Probe

Mitophagy plays a crucial role in maintaining intracellular homeostasis through the removal of dysfunctional mitochondria and recycling their constituents in a lysosome-degradative pathway, which leads to microenvironmental changes within mitochondria, such as the pH, viscosity, and polarity. Howeve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2021-02, Vol.93 (6), p.3241-3249
Hauptverfasser: Wang, Xiaodong, Fan, Li, Wang, Shuohang, Zhang, Yuewei, Li, Feng, Zan, Qi, Lu, Wenjing, Shuang, Shaomin, Dong, Chuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3249
container_issue 6
container_start_page 3241
container_title Analytical chemistry (Washington)
container_volume 93
creator Wang, Xiaodong
Fan, Li
Wang, Shuohang
Zhang, Yuewei
Li, Feng
Zan, Qi
Lu, Wenjing
Shuang, Shaomin
Dong, Chuan
description Mitophagy plays a crucial role in maintaining intracellular homeostasis through the removal of dysfunctional mitochondria and recycling their constituents in a lysosome-degradative pathway, which leads to microenvironmental changes within mitochondria, such as the pH, viscosity, and polarity. However, most of the mitochondrial fluorescence viscosity probes only rely on electrostatic attraction and readily leak out from the mitochondria during mitophagy with a decreased membrane potential, thus easily leading to an inaccurate detection of viscosity changes. In this work, we report a mitochondria-immobilized NIR-emissive aggregation-induced emission (AIE) probe CS-Py-BC, which allows for an off–on fluorescence response to viscosity, thus enabling the real-time monitoring viscosity variation during mitophagy. This system consists of a cyanostilbene skeleton as the AIE active core and viscosity-sensitive unit, a pyridinium cation for the mitochondria-targeting group, and a benzyl chloride subunit that induces mitochondrial immobilization. As the viscosity increased from 0.903 cP (0% glycerol) to 965 cP (99% glycerol), CS-Py-BC exhibited an about 92-fold increase in fluorescence intensity at 650 nm, which might be attributed to the restriction of rotation and inhibition of twisted intramolecular charge transfer in a high viscosity system. We also revealed that CS-Py-BC could be well immobilized onto mitochondria, regardless of the mitochondrial membrane potential fluctuation. Most importantly, using CS-Py-BC, we have successfully visualized the increased mitochondrial viscosity during starvation or rapamycin-induced mitophagy in real time. All these features render CS-Py-BC a promising candidate to investigate mitophagy-associated dynamic physiological and pathological processes.
doi_str_mv 10.1021/acs.analchem.0c04826
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000620922300023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492315905</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-72149a581b579e3fc0a7d5f6742ca97eab595a102a878903d4a604f103f0aebb3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EokvhDRCKxBFlGdtxEh-rVYGVWkCo5RpNnEnWVRIvdqJqeYm-cr3sdiUuiJPH4-8fjf-fsbcclhwE_4gmLHHE3mxoWIKBrBT5M7bgSkCal6V4zhYAIFNRAJyxVyHcAXAOPH_JzqRUUoPOFuzhB2Gf3tiBkms32sl5O3bJdSzMxo2Nt9gnP20wLthplzTz6Xm7wW6X3Ib9Hf8SpOthcLXt7W9qkq-EPl2PrUcfbxdd56nDyboxNpvZxN7lYEOIjeS7dzW9Zi9a7AO9OZ7n7PbT5c3qS3r17fN6dXGVoizyKS0EzzSqkteq0CRbA1g0qs2LTBjUBWGttMLoE5ZFqUE2GeaQtRxkC0h1Lc_Z-8PcrXe_ZgpTdedmH-0Mlci0kFxpUJHKDpTxLgRPbbX1dkC_qzhU-xSqmEL1lEJ1TCHK3h2Hz_VAzUn0ZHsEPhyAe6pdG4yl0dAJi7HlArQQMlZCRrr8f3plpz_-rtw8TlEKB-l-z9MP_7n8I3GZuao</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492315905</pqid></control><display><type>article</type><title>Real-Time Monitoring Mitochondrial Viscosity during Mitophagy Using a Mitochondria-Immobilized Near-Infrared Aggregation-Induced Emission Probe</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Wang, Xiaodong ; Fan, Li ; Wang, Shuohang ; Zhang, Yuewei ; Li, Feng ; Zan, Qi ; Lu, Wenjing ; Shuang, Shaomin ; Dong, Chuan</creator><creatorcontrib>Wang, Xiaodong ; Fan, Li ; Wang, Shuohang ; Zhang, Yuewei ; Li, Feng ; Zan, Qi ; Lu, Wenjing ; Shuang, Shaomin ; Dong, Chuan</creatorcontrib><description>Mitophagy plays a crucial role in maintaining intracellular homeostasis through the removal of dysfunctional mitochondria and recycling their constituents in a lysosome-degradative pathway, which leads to microenvironmental changes within mitochondria, such as the pH, viscosity, and polarity. However, most of the mitochondrial fluorescence viscosity probes only rely on electrostatic attraction and readily leak out from the mitochondria during mitophagy with a decreased membrane potential, thus easily leading to an inaccurate detection of viscosity changes. In this work, we report a mitochondria-immobilized NIR-emissive aggregation-induced emission (AIE) probe CS-Py-BC, which allows for an off–on fluorescence response to viscosity, thus enabling the real-time monitoring viscosity variation during mitophagy. This system consists of a cyanostilbene skeleton as the AIE active core and viscosity-sensitive unit, a pyridinium cation for the mitochondria-targeting group, and a benzyl chloride subunit that induces mitochondrial immobilization. As the viscosity increased from 0.903 cP (0% glycerol) to 965 cP (99% glycerol), CS-Py-BC exhibited an about 92-fold increase in fluorescence intensity at 650 nm, which might be attributed to the restriction of rotation and inhibition of twisted intramolecular charge transfer in a high viscosity system. We also revealed that CS-Py-BC could be well immobilized onto mitochondria, regardless of the mitochondrial membrane potential fluctuation. Most importantly, using CS-Py-BC, we have successfully visualized the increased mitochondrial viscosity during starvation or rapamycin-induced mitophagy in real time. All these features render CS-Py-BC a promising candidate to investigate mitophagy-associated dynamic physiological and pathological processes.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.0c04826</identifier><identifier>PMID: 33539094</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Agglomeration ; Charge transfer ; Chemistry ; Chemistry, Analytical ; Emission ; Fluorescence ; Fluorescent indicators ; Glycerol ; Homeostasis ; Immobilization ; Membrane potential ; Membranes ; Mitochondria ; Mitophagy ; Monitoring ; Near infrared radiation ; Physical Sciences ; Polarity ; Pyridinium ; Rapamycin ; Real time ; Science &amp; Technology ; Viscosity</subject><ispartof>Analytical chemistry (Washington), 2021-02, Vol.93 (6), p.3241-3249</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 16, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>97</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000620922300023</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a376t-72149a581b579e3fc0a7d5f6742ca97eab595a102a878903d4a604f103f0aebb3</citedby><cites>FETCH-LOGICAL-a376t-72149a581b579e3fc0a7d5f6742ca97eab595a102a878903d4a604f103f0aebb3</cites><orcidid>0000-0002-2616-5343 ; 0000-0002-1827-8794 ; 0000-0003-2880-5444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.0c04826$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.0c04826$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27080,27928,27929,39262,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33539094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xiaodong</creatorcontrib><creatorcontrib>Fan, Li</creatorcontrib><creatorcontrib>Wang, Shuohang</creatorcontrib><creatorcontrib>Zhang, Yuewei</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Zan, Qi</creatorcontrib><creatorcontrib>Lu, Wenjing</creatorcontrib><creatorcontrib>Shuang, Shaomin</creatorcontrib><creatorcontrib>Dong, Chuan</creatorcontrib><title>Real-Time Monitoring Mitochondrial Viscosity during Mitophagy Using a Mitochondria-Immobilized Near-Infrared Aggregation-Induced Emission Probe</title><title>Analytical chemistry (Washington)</title><addtitle>ANAL CHEM</addtitle><addtitle>Anal. Chem</addtitle><description>Mitophagy plays a crucial role in maintaining intracellular homeostasis through the removal of dysfunctional mitochondria and recycling their constituents in a lysosome-degradative pathway, which leads to microenvironmental changes within mitochondria, such as the pH, viscosity, and polarity. However, most of the mitochondrial fluorescence viscosity probes only rely on electrostatic attraction and readily leak out from the mitochondria during mitophagy with a decreased membrane potential, thus easily leading to an inaccurate detection of viscosity changes. In this work, we report a mitochondria-immobilized NIR-emissive aggregation-induced emission (AIE) probe CS-Py-BC, which allows for an off–on fluorescence response to viscosity, thus enabling the real-time monitoring viscosity variation during mitophagy. This system consists of a cyanostilbene skeleton as the AIE active core and viscosity-sensitive unit, a pyridinium cation for the mitochondria-targeting group, and a benzyl chloride subunit that induces mitochondrial immobilization. As the viscosity increased from 0.903 cP (0% glycerol) to 965 cP (99% glycerol), CS-Py-BC exhibited an about 92-fold increase in fluorescence intensity at 650 nm, which might be attributed to the restriction of rotation and inhibition of twisted intramolecular charge transfer in a high viscosity system. We also revealed that CS-Py-BC could be well immobilized onto mitochondria, regardless of the mitochondrial membrane potential fluctuation. Most importantly, using CS-Py-BC, we have successfully visualized the increased mitochondrial viscosity during starvation or rapamycin-induced mitophagy in real time. All these features render CS-Py-BC a promising candidate to investigate mitophagy-associated dynamic physiological and pathological processes.</description><subject>Agglomeration</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Chemistry, Analytical</subject><subject>Emission</subject><subject>Fluorescence</subject><subject>Fluorescent indicators</subject><subject>Glycerol</subject><subject>Homeostasis</subject><subject>Immobilization</subject><subject>Membrane potential</subject><subject>Membranes</subject><subject>Mitochondria</subject><subject>Mitophagy</subject><subject>Monitoring</subject><subject>Near infrared radiation</subject><subject>Physical Sciences</subject><subject>Polarity</subject><subject>Pyridinium</subject><subject>Rapamycin</subject><subject>Real time</subject><subject>Science &amp; Technology</subject><subject>Viscosity</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkcFu1DAQhi0EokvhDRCKxBFlGdtxEh-rVYGVWkCo5RpNnEnWVRIvdqJqeYm-cr3sdiUuiJPH4-8fjf-fsbcclhwE_4gmLHHE3mxoWIKBrBT5M7bgSkCal6V4zhYAIFNRAJyxVyHcAXAOPH_JzqRUUoPOFuzhB2Gf3tiBkms32sl5O3bJdSzMxo2Nt9gnP20wLthplzTz6Xm7wW6X3Ib9Hf8SpOthcLXt7W9qkq-EPl2PrUcfbxdd56nDyboxNpvZxN7lYEOIjeS7dzW9Zi9a7AO9OZ7n7PbT5c3qS3r17fN6dXGVoizyKS0EzzSqkteq0CRbA1g0qs2LTBjUBWGttMLoE5ZFqUE2GeaQtRxkC0h1Lc_Z-8PcrXe_ZgpTdedmH-0Mlci0kFxpUJHKDpTxLgRPbbX1dkC_qzhU-xSqmEL1lEJ1TCHK3h2Hz_VAzUn0ZHsEPhyAe6pdG4yl0dAJi7HlArQQMlZCRrr8f3plpz_-rtw8TlEKB-l-z9MP_7n8I3GZuao</recordid><startdate>20210216</startdate><enddate>20210216</enddate><creator>Wang, Xiaodong</creator><creator>Fan, Li</creator><creator>Wang, Shuohang</creator><creator>Zhang, Yuewei</creator><creator>Li, Feng</creator><creator>Zan, Qi</creator><creator>Lu, Wenjing</creator><creator>Shuang, Shaomin</creator><creator>Dong, Chuan</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-2616-5343</orcidid><orcidid>https://orcid.org/0000-0002-1827-8794</orcidid><orcidid>https://orcid.org/0000-0003-2880-5444</orcidid></search><sort><creationdate>20210216</creationdate><title>Real-Time Monitoring Mitochondrial Viscosity during Mitophagy Using a Mitochondria-Immobilized Near-Infrared Aggregation-Induced Emission Probe</title><author>Wang, Xiaodong ; Fan, Li ; Wang, Shuohang ; Zhang, Yuewei ; Li, Feng ; Zan, Qi ; Lu, Wenjing ; Shuang, Shaomin ; Dong, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-72149a581b579e3fc0a7d5f6742ca97eab595a102a878903d4a604f103f0aebb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agglomeration</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Chemistry, Analytical</topic><topic>Emission</topic><topic>Fluorescence</topic><topic>Fluorescent indicators</topic><topic>Glycerol</topic><topic>Homeostasis</topic><topic>Immobilization</topic><topic>Membrane potential</topic><topic>Membranes</topic><topic>Mitochondria</topic><topic>Mitophagy</topic><topic>Monitoring</topic><topic>Near infrared radiation</topic><topic>Physical Sciences</topic><topic>Polarity</topic><topic>Pyridinium</topic><topic>Rapamycin</topic><topic>Real time</topic><topic>Science &amp; Technology</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaodong</creatorcontrib><creatorcontrib>Fan, Li</creatorcontrib><creatorcontrib>Wang, Shuohang</creatorcontrib><creatorcontrib>Zhang, Yuewei</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Zan, Qi</creatorcontrib><creatorcontrib>Lu, Wenjing</creatorcontrib><creatorcontrib>Shuang, Shaomin</creatorcontrib><creatorcontrib>Dong, Chuan</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaodong</au><au>Fan, Li</au><au>Wang, Shuohang</au><au>Zhang, Yuewei</au><au>Li, Feng</au><au>Zan, Qi</au><au>Lu, Wenjing</au><au>Shuang, Shaomin</au><au>Dong, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Monitoring Mitochondrial Viscosity during Mitophagy Using a Mitochondria-Immobilized Near-Infrared Aggregation-Induced Emission Probe</atitle><jtitle>Analytical chemistry (Washington)</jtitle><stitle>ANAL CHEM</stitle><addtitle>Anal. Chem</addtitle><date>2021-02-16</date><risdate>2021</risdate><volume>93</volume><issue>6</issue><spage>3241</spage><epage>3249</epage><pages>3241-3249</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Mitophagy plays a crucial role in maintaining intracellular homeostasis through the removal of dysfunctional mitochondria and recycling their constituents in a lysosome-degradative pathway, which leads to microenvironmental changes within mitochondria, such as the pH, viscosity, and polarity. However, most of the mitochondrial fluorescence viscosity probes only rely on electrostatic attraction and readily leak out from the mitochondria during mitophagy with a decreased membrane potential, thus easily leading to an inaccurate detection of viscosity changes. In this work, we report a mitochondria-immobilized NIR-emissive aggregation-induced emission (AIE) probe CS-Py-BC, which allows for an off–on fluorescence response to viscosity, thus enabling the real-time monitoring viscosity variation during mitophagy. This system consists of a cyanostilbene skeleton as the AIE active core and viscosity-sensitive unit, a pyridinium cation for the mitochondria-targeting group, and a benzyl chloride subunit that induces mitochondrial immobilization. As the viscosity increased from 0.903 cP (0% glycerol) to 965 cP (99% glycerol), CS-Py-BC exhibited an about 92-fold increase in fluorescence intensity at 650 nm, which might be attributed to the restriction of rotation and inhibition of twisted intramolecular charge transfer in a high viscosity system. We also revealed that CS-Py-BC could be well immobilized onto mitochondria, regardless of the mitochondrial membrane potential fluctuation. Most importantly, using CS-Py-BC, we have successfully visualized the increased mitochondrial viscosity during starvation or rapamycin-induced mitophagy in real time. All these features render CS-Py-BC a promising candidate to investigate mitophagy-associated dynamic physiological and pathological processes.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>33539094</pmid><doi>10.1021/acs.analchem.0c04826</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2616-5343</orcidid><orcidid>https://orcid.org/0000-0002-1827-8794</orcidid><orcidid>https://orcid.org/0000-0003-2880-5444</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2021-02, Vol.93 (6), p.3241-3249
issn 0003-2700
1520-6882
language eng
recordid cdi_webofscience_primary_000620922300023
source ACS Publications; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Agglomeration
Charge transfer
Chemistry
Chemistry, Analytical
Emission
Fluorescence
Fluorescent indicators
Glycerol
Homeostasis
Immobilization
Membrane potential
Membranes
Mitochondria
Mitophagy
Monitoring
Near infrared radiation
Physical Sciences
Polarity
Pyridinium
Rapamycin
Real time
Science & Technology
Viscosity
title Real-Time Monitoring Mitochondrial Viscosity during Mitophagy Using a Mitochondria-Immobilized Near-Infrared Aggregation-Induced Emission Probe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T18%3A41%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Monitoring%20Mitochondrial%20Viscosity%20during%20Mitophagy%20Using%20a%20Mitochondria-Immobilized%20Near-Infrared%20Aggregation-Induced%20Emission%20Probe&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Wang,%20Xiaodong&rft.date=2021-02-16&rft.volume=93&rft.issue=6&rft.spage=3241&rft.epage=3249&rft.pages=3241-3249&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.0c04826&rft_dat=%3Cproquest_webof%3E2492315905%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492315905&rft_id=info:pmid/33539094&rfr_iscdi=true