Tensile Behavior of Normal-Strength Steel-Fiber Green Ultra-High-Performance Fiber-Reinforced Concrete

This paper investigates the tensile behavior of green ultra-high-performance fiber-reinforced concrete (UHPFRC) using commercially available steel fibers. An ecofriendly ultra-high performance concrete (UHPC) with a low carbon footprint was developed, aiming for a compressive strength of 150 MPa (22...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACI materials journal 2021-01, Vol.118 (1), p.127-138
Hauptverfasser: Abellan-Garcia, J., Fernandez-Gomez, J. A., Torres-Castellanos, N., Nunez-Lopez, A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138
container_issue 1
container_start_page 127
container_title ACI materials journal
container_volume 118
creator Abellan-Garcia, J.
Fernandez-Gomez, J. A.
Torres-Castellanos, N.
Nunez-Lopez, A. M.
description This paper investigates the tensile behavior of green ultra-high-performance fiber-reinforced concrete (UHPFRC) using commercially available steel fibers. An ecofriendly ultra-high performance concrete (UHPC) with a low carbon footprint was developed, aiming for a compressive strength of 150 MPa (22 ksi) and a high packing density (0.81) while using recycled glass powder and micro-limestone powder as partial substitution of silica fume and otdinaty portland cement. Besides the commercially available normal-strength deformed steel fibers, high-strength smooth steel fibers were used to establish a comparison. The study showed that, with appropriate hooked normal-strength and smooth high-strength steel fibers, 1% of fiber is enough to achieve strain hardening behavior. Moreover, the smooth fibers achieved the maximum tensile strength (sigma(pc) = 11.04 MPa) when 2% of volume was used. However, despite having less tensile strength, only the hooked-end fibers achieved a maximum post-cracking strain (epsilon(pe)) of over 0.3% using 2% of volume.
doi_str_mv 10.14359/51725992
format Article
fullrecord <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_webofscience_primary_000620782900012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A671952708</galeid><sourcerecordid>A671952708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-e716c7c5ee8a4bc7dd485b0e21b173f0fb68a7ad517c1cc94c5b9048c2a2d9763</originalsourceid><addsrcrecordid>eNqNkE1vGyEQhlGVSnXSHPoPVuqpqkiAhQWO7qr5kKK2SmLJtxXLDjbRGhwWN8q_D46Tnqs5MELPMLwPQl8oOaO8FvpcUMmE1uwDmlHNOZa1XB6hGVFK45qJ5Sd0PE0PhLBGCDFD7h7C5EeofsDa_PUxVdFVv2LamBHf5QRhldfVXQYY8YXvIVWXCSBUizEng6_8ao3_QHJ7PlioXhF8Cz6UKwtD1cZgE2T4jD46M05w-naeoMXFz_v2Ct_8vrxu5zfY1oxnDJI2VloBoAzvrRwGrkRPgNGeytoR1zfKSDOUkJZaq7kVvSZcWWbYoGVTn6Cvh3e3KT7uYMrdQ9ylUFZ2jGsmiyO-p84O1MqM0O0_W9LYUgNsvI0BXDHSzRtJtWCSqDLw7TBgU5ymBK7bJr8x6bmjpHv13r17L-z3A_sEfXST9VDM_OMJIQ0jUjFdOrqn1f_Trc8m-xjauAu5fgFyZJVv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492714346</pqid></control><display><type>article</type><title>Tensile Behavior of Normal-Strength Steel-Fiber Green Ultra-High-Performance Fiber-Reinforced Concrete</title><source>American Concrete Institute Online Journal Archives</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Abellan-Garcia, J. ; Fernandez-Gomez, J. A. ; Torres-Castellanos, N. ; Nunez-Lopez, A. M.</creator><creatorcontrib>Abellan-Garcia, J. ; Fernandez-Gomez, J. A. ; Torres-Castellanos, N. ; Nunez-Lopez, A. M.</creatorcontrib><description>This paper investigates the tensile behavior of green ultra-high-performance fiber-reinforced concrete (UHPFRC) using commercially available steel fibers. An ecofriendly ultra-high performance concrete (UHPC) with a low carbon footprint was developed, aiming for a compressive strength of 150 MPa (22 ksi) and a high packing density (0.81) while using recycled glass powder and micro-limestone powder as partial substitution of silica fume and otdinaty portland cement. Besides the commercially available normal-strength deformed steel fibers, high-strength smooth steel fibers were used to establish a comparison. The study showed that, with appropriate hooked normal-strength and smooth high-strength steel fibers, 1% of fiber is enough to achieve strain hardening behavior. Moreover, the smooth fibers achieved the maximum tensile strength (sigma(pc) = 11.04 MPa) when 2% of volume was used. However, despite having less tensile strength, only the hooked-end fibers achieved a maximum post-cracking strain (epsilon(pe)) of over 0.3% using 2% of volume.</description><identifier>ISSN: 0889-325X</identifier><identifier>EISSN: 1944-737X</identifier><identifier>EISSN: 0889-325X</identifier><identifier>DOI: 10.14359/51725992</identifier><language>eng</language><publisher>FARMINGTON HILLS: Amer Concrete Inst</publisher><subject>Analysis ; Cement ; Composition ; Compressive strength ; Concrete ; Construction &amp; Building Technology ; Ductility ; Environmental impact ; Fiber reinforced concretes ; High strength steels ; Laboratories ; Limestone ; Materials Science ; Materials Science, Multidisciplinary ; Mechanical properties ; Packing density ; Portland cements ; Reinforced concrete ; Reinforced concrete, Fiber ; Reinforcing steels ; Science &amp; Technology ; Silica fume ; Silicon dioxide ; Steel fibers ; Strain hardening ; Strength of materials ; Sustainable materials ; Technology ; Tensile strength ; Testing</subject><ispartof>ACI materials journal, 2021-01, Vol.118 (1), p.127-138</ispartof><rights>COPYRIGHT 2021 American Concrete Institute</rights><rights>Copyright American Concrete Institute Jan 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>35</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000620782900012</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c324t-e716c7c5ee8a4bc7dd485b0e21b173f0fb68a7ad517c1cc94c5b9048c2a2d9763</citedby><cites>FETCH-LOGICAL-c324t-e716c7c5ee8a4bc7dd485b0e21b173f0fb68a7ad517c1cc94c5b9048c2a2d9763</cites><orcidid>0000-0002-0353-322X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Abellan-Garcia, J.</creatorcontrib><creatorcontrib>Fernandez-Gomez, J. A.</creatorcontrib><creatorcontrib>Torres-Castellanos, N.</creatorcontrib><creatorcontrib>Nunez-Lopez, A. M.</creatorcontrib><title>Tensile Behavior of Normal-Strength Steel-Fiber Green Ultra-High-Performance Fiber-Reinforced Concrete</title><title>ACI materials journal</title><addtitle>ACI MATER J</addtitle><description>This paper investigates the tensile behavior of green ultra-high-performance fiber-reinforced concrete (UHPFRC) using commercially available steel fibers. An ecofriendly ultra-high performance concrete (UHPC) with a low carbon footprint was developed, aiming for a compressive strength of 150 MPa (22 ksi) and a high packing density (0.81) while using recycled glass powder and micro-limestone powder as partial substitution of silica fume and otdinaty portland cement. Besides the commercially available normal-strength deformed steel fibers, high-strength smooth steel fibers were used to establish a comparison. The study showed that, with appropriate hooked normal-strength and smooth high-strength steel fibers, 1% of fiber is enough to achieve strain hardening behavior. Moreover, the smooth fibers achieved the maximum tensile strength (sigma(pc) = 11.04 MPa) when 2% of volume was used. However, despite having less tensile strength, only the hooked-end fibers achieved a maximum post-cracking strain (epsilon(pe)) of over 0.3% using 2% of volume.</description><subject>Analysis</subject><subject>Cement</subject><subject>Composition</subject><subject>Compressive strength</subject><subject>Concrete</subject><subject>Construction &amp; Building Technology</subject><subject>Ductility</subject><subject>Environmental impact</subject><subject>Fiber reinforced concretes</subject><subject>High strength steels</subject><subject>Laboratories</subject><subject>Limestone</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Mechanical properties</subject><subject>Packing density</subject><subject>Portland cements</subject><subject>Reinforced concrete</subject><subject>Reinforced concrete, Fiber</subject><subject>Reinforcing steels</subject><subject>Science &amp; Technology</subject><subject>Silica fume</subject><subject>Silicon dioxide</subject><subject>Steel fibers</subject><subject>Strain hardening</subject><subject>Strength of materials</subject><subject>Sustainable materials</subject><subject>Technology</subject><subject>Tensile strength</subject><subject>Testing</subject><issn>0889-325X</issn><issn>1944-737X</issn><issn>0889-325X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkE1vGyEQhlGVSnXSHPoPVuqpqkiAhQWO7qr5kKK2SmLJtxXLDjbRGhwWN8q_D46Tnqs5MELPMLwPQl8oOaO8FvpcUMmE1uwDmlHNOZa1XB6hGVFK45qJ5Sd0PE0PhLBGCDFD7h7C5EeofsDa_PUxVdFVv2LamBHf5QRhldfVXQYY8YXvIVWXCSBUizEng6_8ao3_QHJ7PlioXhF8Cz6UKwtD1cZgE2T4jD46M05w-naeoMXFz_v2Ct_8vrxu5zfY1oxnDJI2VloBoAzvrRwGrkRPgNGeytoR1zfKSDOUkJZaq7kVvSZcWWbYoGVTn6Cvh3e3KT7uYMrdQ9ylUFZ2jGsmiyO-p84O1MqM0O0_W9LYUgNsvI0BXDHSzRtJtWCSqDLw7TBgU5ymBK7bJr8x6bmjpHv13r17L-z3A_sEfXST9VDM_OMJIQ0jUjFdOrqn1f_Trc8m-xjauAu5fgFyZJVv</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Abellan-Garcia, J.</creator><creator>Fernandez-Gomez, J. A.</creator><creator>Torres-Castellanos, N.</creator><creator>Nunez-Lopez, A. M.</creator><general>Amer Concrete Inst</general><general>American Concrete Institute</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QQ</scope><scope>7RQ</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>U9A</scope><orcidid>https://orcid.org/0000-0002-0353-322X</orcidid></search><sort><creationdate>20210101</creationdate><title>Tensile Behavior of Normal-Strength Steel-Fiber Green Ultra-High-Performance Fiber-Reinforced Concrete</title><author>Abellan-Garcia, J. ; Fernandez-Gomez, J. A. ; Torres-Castellanos, N. ; Nunez-Lopez, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-e716c7c5ee8a4bc7dd485b0e21b173f0fb68a7ad517c1cc94c5b9048c2a2d9763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Cement</topic><topic>Composition</topic><topic>Compressive strength</topic><topic>Concrete</topic><topic>Construction &amp; Building Technology</topic><topic>Ductility</topic><topic>Environmental impact</topic><topic>Fiber reinforced concretes</topic><topic>High strength steels</topic><topic>Laboratories</topic><topic>Limestone</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Mechanical properties</topic><topic>Packing density</topic><topic>Portland cements</topic><topic>Reinforced concrete</topic><topic>Reinforced concrete, Fiber</topic><topic>Reinforcing steels</topic><topic>Science &amp; Technology</topic><topic>Silica fume</topic><topic>Silicon dioxide</topic><topic>Steel fibers</topic><topic>Strain hardening</topic><topic>Strength of materials</topic><topic>Sustainable materials</topic><topic>Technology</topic><topic>Tensile strength</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abellan-Garcia, J.</creatorcontrib><creatorcontrib>Fernandez-Gomez, J. A.</creatorcontrib><creatorcontrib>Torres-Castellanos, N.</creatorcontrib><creatorcontrib>Nunez-Lopez, A. M.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Ceramic Abstracts</collection><collection>Career &amp; Technical Education Database</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>ACI materials journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abellan-Garcia, J.</au><au>Fernandez-Gomez, J. A.</au><au>Torres-Castellanos, N.</au><au>Nunez-Lopez, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensile Behavior of Normal-Strength Steel-Fiber Green Ultra-High-Performance Fiber-Reinforced Concrete</atitle><jtitle>ACI materials journal</jtitle><stitle>ACI MATER J</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>118</volume><issue>1</issue><spage>127</spage><epage>138</epage><pages>127-138</pages><issn>0889-325X</issn><eissn>1944-737X</eissn><eissn>0889-325X</eissn><abstract>This paper investigates the tensile behavior of green ultra-high-performance fiber-reinforced concrete (UHPFRC) using commercially available steel fibers. An ecofriendly ultra-high performance concrete (UHPC) with a low carbon footprint was developed, aiming for a compressive strength of 150 MPa (22 ksi) and a high packing density (0.81) while using recycled glass powder and micro-limestone powder as partial substitution of silica fume and otdinaty portland cement. Besides the commercially available normal-strength deformed steel fibers, high-strength smooth steel fibers were used to establish a comparison. The study showed that, with appropriate hooked normal-strength and smooth high-strength steel fibers, 1% of fiber is enough to achieve strain hardening behavior. Moreover, the smooth fibers achieved the maximum tensile strength (sigma(pc) = 11.04 MPa) when 2% of volume was used. However, despite having less tensile strength, only the hooked-end fibers achieved a maximum post-cracking strain (epsilon(pe)) of over 0.3% using 2% of volume.</abstract><cop>FARMINGTON HILLS</cop><pub>Amer Concrete Inst</pub><doi>10.14359/51725992</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0353-322X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0889-325X
ispartof ACI materials journal, 2021-01, Vol.118 (1), p.127-138
issn 0889-325X
1944-737X
0889-325X
language eng
recordid cdi_webofscience_primary_000620782900012
source American Concrete Institute Online Journal Archives; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Analysis
Cement
Composition
Compressive strength
Concrete
Construction & Building Technology
Ductility
Environmental impact
Fiber reinforced concretes
High strength steels
Laboratories
Limestone
Materials Science
Materials Science, Multidisciplinary
Mechanical properties
Packing density
Portland cements
Reinforced concrete
Reinforced concrete, Fiber
Reinforcing steels
Science & Technology
Silica fume
Silicon dioxide
Steel fibers
Strain hardening
Strength of materials
Sustainable materials
Technology
Tensile strength
Testing
title Tensile Behavior of Normal-Strength Steel-Fiber Green Ultra-High-Performance Fiber-Reinforced Concrete
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A49%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensile%20Behavior%20of%20Normal-Strength%20Steel-Fiber%20Green%20Ultra-High-Performance%20Fiber-Reinforced%20Concrete&rft.jtitle=ACI%20materials%20journal&rft.au=Abellan-Garcia,%20J.&rft.date=2021-01-01&rft.volume=118&rft.issue=1&rft.spage=127&rft.epage=138&rft.pages=127-138&rft.issn=0889-325X&rft.eissn=1944-737X&rft_id=info:doi/10.14359/51725992&rft_dat=%3Cgale_webof%3EA671952708%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492714346&rft_id=info:pmid/&rft_galeid=A671952708&rfr_iscdi=true