Tensile Behavior of Normal-Strength Steel-Fiber Green Ultra-High-Performance Fiber-Reinforced Concrete
This paper investigates the tensile behavior of green ultra-high-performance fiber-reinforced concrete (UHPFRC) using commercially available steel fibers. An ecofriendly ultra-high performance concrete (UHPC) with a low carbon footprint was developed, aiming for a compressive strength of 150 MPa (22...
Gespeichert in:
Veröffentlicht in: | ACI materials journal 2021-01, Vol.118 (1), p.127-138 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 138 |
---|---|
container_issue | 1 |
container_start_page | 127 |
container_title | ACI materials journal |
container_volume | 118 |
creator | Abellan-Garcia, J. Fernandez-Gomez, J. A. Torres-Castellanos, N. Nunez-Lopez, A. M. |
description | This paper investigates the tensile behavior of green ultra-high-performance fiber-reinforced concrete (UHPFRC) using commercially available steel fibers. An ecofriendly ultra-high performance concrete (UHPC) with a low carbon footprint was developed, aiming for a compressive strength of 150 MPa (22 ksi) and a high packing density (0.81) while using recycled glass powder and micro-limestone powder as partial substitution of silica fume and otdinaty portland cement. Besides the commercially available normal-strength deformed steel fibers, high-strength smooth steel fibers were used to establish a comparison. The study showed that, with appropriate hooked normal-strength and smooth high-strength steel fibers, 1% of fiber is enough to achieve strain hardening behavior. Moreover, the smooth fibers achieved the maximum tensile strength (sigma(pc) = 11.04 MPa) when 2% of volume was used. However, despite having less tensile strength, only the hooked-end fibers achieved a maximum post-cracking strain (epsilon(pe)) of over 0.3% using 2% of volume. |
doi_str_mv | 10.14359/51725992 |
format | Article |
fullrecord | <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_webofscience_primary_000620782900012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A671952708</galeid><sourcerecordid>A671952708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-e716c7c5ee8a4bc7dd485b0e21b173f0fb68a7ad517c1cc94c5b9048c2a2d9763</originalsourceid><addsrcrecordid>eNqNkE1vGyEQhlGVSnXSHPoPVuqpqkiAhQWO7qr5kKK2SmLJtxXLDjbRGhwWN8q_D46Tnqs5MELPMLwPQl8oOaO8FvpcUMmE1uwDmlHNOZa1XB6hGVFK45qJ5Sd0PE0PhLBGCDFD7h7C5EeofsDa_PUxVdFVv2LamBHf5QRhldfVXQYY8YXvIVWXCSBUizEng6_8ao3_QHJ7PlioXhF8Cz6UKwtD1cZgE2T4jD46M05w-naeoMXFz_v2Ct_8vrxu5zfY1oxnDJI2VloBoAzvrRwGrkRPgNGeytoR1zfKSDOUkJZaq7kVvSZcWWbYoGVTn6Cvh3e3KT7uYMrdQ9ylUFZ2jGsmiyO-p84O1MqM0O0_W9LYUgNsvI0BXDHSzRtJtWCSqDLw7TBgU5ymBK7bJr8x6bmjpHv13r17L-z3A_sEfXST9VDM_OMJIQ0jUjFdOrqn1f_Trc8m-xjauAu5fgFyZJVv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492714346</pqid></control><display><type>article</type><title>Tensile Behavior of Normal-Strength Steel-Fiber Green Ultra-High-Performance Fiber-Reinforced Concrete</title><source>American Concrete Institute Online Journal Archives</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Abellan-Garcia, J. ; Fernandez-Gomez, J. A. ; Torres-Castellanos, N. ; Nunez-Lopez, A. M.</creator><creatorcontrib>Abellan-Garcia, J. ; Fernandez-Gomez, J. A. ; Torres-Castellanos, N. ; Nunez-Lopez, A. M.</creatorcontrib><description>This paper investigates the tensile behavior of green ultra-high-performance fiber-reinforced concrete (UHPFRC) using commercially available steel fibers. An ecofriendly ultra-high performance concrete (UHPC) with a low carbon footprint was developed, aiming for a compressive strength of 150 MPa (22 ksi) and a high packing density (0.81) while using recycled glass powder and micro-limestone powder as partial substitution of silica fume and otdinaty portland cement. Besides the commercially available normal-strength deformed steel fibers, high-strength smooth steel fibers were used to establish a comparison. The study showed that, with appropriate hooked normal-strength and smooth high-strength steel fibers, 1% of fiber is enough to achieve strain hardening behavior. Moreover, the smooth fibers achieved the maximum tensile strength (sigma(pc) = 11.04 MPa) when 2% of volume was used. However, despite having less tensile strength, only the hooked-end fibers achieved a maximum post-cracking strain (epsilon(pe)) of over 0.3% using 2% of volume.</description><identifier>ISSN: 0889-325X</identifier><identifier>EISSN: 1944-737X</identifier><identifier>EISSN: 0889-325X</identifier><identifier>DOI: 10.14359/51725992</identifier><language>eng</language><publisher>FARMINGTON HILLS: Amer Concrete Inst</publisher><subject>Analysis ; Cement ; Composition ; Compressive strength ; Concrete ; Construction & Building Technology ; Ductility ; Environmental impact ; Fiber reinforced concretes ; High strength steels ; Laboratories ; Limestone ; Materials Science ; Materials Science, Multidisciplinary ; Mechanical properties ; Packing density ; Portland cements ; Reinforced concrete ; Reinforced concrete, Fiber ; Reinforcing steels ; Science & Technology ; Silica fume ; Silicon dioxide ; Steel fibers ; Strain hardening ; Strength of materials ; Sustainable materials ; Technology ; Tensile strength ; Testing</subject><ispartof>ACI materials journal, 2021-01, Vol.118 (1), p.127-138</ispartof><rights>COPYRIGHT 2021 American Concrete Institute</rights><rights>Copyright American Concrete Institute Jan 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>35</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000620782900012</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c324t-e716c7c5ee8a4bc7dd485b0e21b173f0fb68a7ad517c1cc94c5b9048c2a2d9763</citedby><cites>FETCH-LOGICAL-c324t-e716c7c5ee8a4bc7dd485b0e21b173f0fb68a7ad517c1cc94c5b9048c2a2d9763</cites><orcidid>0000-0002-0353-322X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Abellan-Garcia, J.</creatorcontrib><creatorcontrib>Fernandez-Gomez, J. A.</creatorcontrib><creatorcontrib>Torres-Castellanos, N.</creatorcontrib><creatorcontrib>Nunez-Lopez, A. M.</creatorcontrib><title>Tensile Behavior of Normal-Strength Steel-Fiber Green Ultra-High-Performance Fiber-Reinforced Concrete</title><title>ACI materials journal</title><addtitle>ACI MATER J</addtitle><description>This paper investigates the tensile behavior of green ultra-high-performance fiber-reinforced concrete (UHPFRC) using commercially available steel fibers. An ecofriendly ultra-high performance concrete (UHPC) with a low carbon footprint was developed, aiming for a compressive strength of 150 MPa (22 ksi) and a high packing density (0.81) while using recycled glass powder and micro-limestone powder as partial substitution of silica fume and otdinaty portland cement. Besides the commercially available normal-strength deformed steel fibers, high-strength smooth steel fibers were used to establish a comparison. The study showed that, with appropriate hooked normal-strength and smooth high-strength steel fibers, 1% of fiber is enough to achieve strain hardening behavior. Moreover, the smooth fibers achieved the maximum tensile strength (sigma(pc) = 11.04 MPa) when 2% of volume was used. However, despite having less tensile strength, only the hooked-end fibers achieved a maximum post-cracking strain (epsilon(pe)) of over 0.3% using 2% of volume.</description><subject>Analysis</subject><subject>Cement</subject><subject>Composition</subject><subject>Compressive strength</subject><subject>Concrete</subject><subject>Construction & Building Technology</subject><subject>Ductility</subject><subject>Environmental impact</subject><subject>Fiber reinforced concretes</subject><subject>High strength steels</subject><subject>Laboratories</subject><subject>Limestone</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Mechanical properties</subject><subject>Packing density</subject><subject>Portland cements</subject><subject>Reinforced concrete</subject><subject>Reinforced concrete, Fiber</subject><subject>Reinforcing steels</subject><subject>Science & Technology</subject><subject>Silica fume</subject><subject>Silicon dioxide</subject><subject>Steel fibers</subject><subject>Strain hardening</subject><subject>Strength of materials</subject><subject>Sustainable materials</subject><subject>Technology</subject><subject>Tensile strength</subject><subject>Testing</subject><issn>0889-325X</issn><issn>1944-737X</issn><issn>0889-325X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkE1vGyEQhlGVSnXSHPoPVuqpqkiAhQWO7qr5kKK2SmLJtxXLDjbRGhwWN8q_D46Tnqs5MELPMLwPQl8oOaO8FvpcUMmE1uwDmlHNOZa1XB6hGVFK45qJ5Sd0PE0PhLBGCDFD7h7C5EeofsDa_PUxVdFVv2LamBHf5QRhldfVXQYY8YXvIVWXCSBUizEng6_8ao3_QHJ7PlioXhF8Cz6UKwtD1cZgE2T4jD46M05w-naeoMXFz_v2Ct_8vrxu5zfY1oxnDJI2VloBoAzvrRwGrkRPgNGeytoR1zfKSDOUkJZaq7kVvSZcWWbYoGVTn6Cvh3e3KT7uYMrdQ9ylUFZ2jGsmiyO-p84O1MqM0O0_W9LYUgNsvI0BXDHSzRtJtWCSqDLw7TBgU5ymBK7bJr8x6bmjpHv13r17L-z3A_sEfXST9VDM_OMJIQ0jUjFdOrqn1f_Trc8m-xjauAu5fgFyZJVv</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Abellan-Garcia, J.</creator><creator>Fernandez-Gomez, J. A.</creator><creator>Torres-Castellanos, N.</creator><creator>Nunez-Lopez, A. M.</creator><general>Amer Concrete Inst</general><general>American Concrete Institute</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QQ</scope><scope>7RQ</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>U9A</scope><orcidid>https://orcid.org/0000-0002-0353-322X</orcidid></search><sort><creationdate>20210101</creationdate><title>Tensile Behavior of Normal-Strength Steel-Fiber Green Ultra-High-Performance Fiber-Reinforced Concrete</title><author>Abellan-Garcia, J. ; Fernandez-Gomez, J. A. ; Torres-Castellanos, N. ; Nunez-Lopez, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-e716c7c5ee8a4bc7dd485b0e21b173f0fb68a7ad517c1cc94c5b9048c2a2d9763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Cement</topic><topic>Composition</topic><topic>Compressive strength</topic><topic>Concrete</topic><topic>Construction & Building Technology</topic><topic>Ductility</topic><topic>Environmental impact</topic><topic>Fiber reinforced concretes</topic><topic>High strength steels</topic><topic>Laboratories</topic><topic>Limestone</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Mechanical properties</topic><topic>Packing density</topic><topic>Portland cements</topic><topic>Reinforced concrete</topic><topic>Reinforced concrete, Fiber</topic><topic>Reinforcing steels</topic><topic>Science & Technology</topic><topic>Silica fume</topic><topic>Silicon dioxide</topic><topic>Steel fibers</topic><topic>Strain hardening</topic><topic>Strength of materials</topic><topic>Sustainable materials</topic><topic>Technology</topic><topic>Tensile strength</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abellan-Garcia, J.</creatorcontrib><creatorcontrib>Fernandez-Gomez, J. A.</creatorcontrib><creatorcontrib>Torres-Castellanos, N.</creatorcontrib><creatorcontrib>Nunez-Lopez, A. M.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Ceramic Abstracts</collection><collection>Career & Technical Education Database</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>ACI materials journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abellan-Garcia, J.</au><au>Fernandez-Gomez, J. A.</au><au>Torres-Castellanos, N.</au><au>Nunez-Lopez, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensile Behavior of Normal-Strength Steel-Fiber Green Ultra-High-Performance Fiber-Reinforced Concrete</atitle><jtitle>ACI materials journal</jtitle><stitle>ACI MATER J</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>118</volume><issue>1</issue><spage>127</spage><epage>138</epage><pages>127-138</pages><issn>0889-325X</issn><eissn>1944-737X</eissn><eissn>0889-325X</eissn><abstract>This paper investigates the tensile behavior of green ultra-high-performance fiber-reinforced concrete (UHPFRC) using commercially available steel fibers. An ecofriendly ultra-high performance concrete (UHPC) with a low carbon footprint was developed, aiming for a compressive strength of 150 MPa (22 ksi) and a high packing density (0.81) while using recycled glass powder and micro-limestone powder as partial substitution of silica fume and otdinaty portland cement. Besides the commercially available normal-strength deformed steel fibers, high-strength smooth steel fibers were used to establish a comparison. The study showed that, with appropriate hooked normal-strength and smooth high-strength steel fibers, 1% of fiber is enough to achieve strain hardening behavior. Moreover, the smooth fibers achieved the maximum tensile strength (sigma(pc) = 11.04 MPa) when 2% of volume was used. However, despite having less tensile strength, only the hooked-end fibers achieved a maximum post-cracking strain (epsilon(pe)) of over 0.3% using 2% of volume.</abstract><cop>FARMINGTON HILLS</cop><pub>Amer Concrete Inst</pub><doi>10.14359/51725992</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0353-322X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0889-325X |
ispartof | ACI materials journal, 2021-01, Vol.118 (1), p.127-138 |
issn | 0889-325X 1944-737X 0889-325X |
language | eng |
recordid | cdi_webofscience_primary_000620782900012 |
source | American Concrete Institute Online Journal Archives; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Analysis Cement Composition Compressive strength Concrete Construction & Building Technology Ductility Environmental impact Fiber reinforced concretes High strength steels Laboratories Limestone Materials Science Materials Science, Multidisciplinary Mechanical properties Packing density Portland cements Reinforced concrete Reinforced concrete, Fiber Reinforcing steels Science & Technology Silica fume Silicon dioxide Steel fibers Strain hardening Strength of materials Sustainable materials Technology Tensile strength Testing |
title | Tensile Behavior of Normal-Strength Steel-Fiber Green Ultra-High-Performance Fiber-Reinforced Concrete |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A49%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensile%20Behavior%20of%20Normal-Strength%20Steel-Fiber%20Green%20Ultra-High-Performance%20Fiber-Reinforced%20Concrete&rft.jtitle=ACI%20materials%20journal&rft.au=Abellan-Garcia,%20J.&rft.date=2021-01-01&rft.volume=118&rft.issue=1&rft.spage=127&rft.epage=138&rft.pages=127-138&rft.issn=0889-325X&rft.eissn=1944-737X&rft_id=info:doi/10.14359/51725992&rft_dat=%3Cgale_webof%3EA671952708%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492714346&rft_id=info:pmid/&rft_galeid=A671952708&rfr_iscdi=true |