A context-aware diversity-oriented knowledge recommendation approach for smart engineering solution design
To proactively fulfill multiple stakeholders’ needs in the engineering solution design process, the knowledge recommendation approach is adopted as a key element in the knowledge management system. Nevertheless, most existing knowledge recommendation approaches cannot simultaneously meet the higher...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 2021-03, Vol.215, p.106739, Article 106739 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106739 |
container_title | Knowledge-based systems |
container_volume | 215 |
creator | Li, Xinyu Chen, Chun-Hsien Zheng, Pai Jiang, Zuhua Wang, Linke |
description | To proactively fulfill multiple stakeholders’ needs in the engineering solution design process, the knowledge recommendation approach is adopted as a key element in the knowledge management system. Nevertheless, most existing knowledge recommendation approaches cannot simultaneously meet the higher standard of in-context accuracy and diversity. To address the issue, this paper proposes a context-aware diversity-oriented knowledge recommendation approach, thereby assisting stakeholders to accomplish engineering solution design in a smarter manner. Three diversity concerns, namely item-diversity, context-diversity, and user-diversity are addressed by semantic-based content analysis, context definition and awareness, and user profile modeling, respectively. Hence, the proposed approach not only maximizes the diversity of the recommended knowledge but also guarantees its accuracy under multiple problem-solving contexts. Moreover, a practical engineering solution design case on a Smart 3D printer platform is conducted, to validate the efficacy of the proposed approach in providing usable and diverse knowledge items. It is anticipated this work can provide useful insights to practitioners in their knowledge-based engineering solution design process. |
doi_str_mv | 10.1016/j.knosys.2021.106739 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000620459300001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705121000022</els_id><sourcerecordid>2501256243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-e93db40e44eecee7c63ae26d36f23c35dd5b870980cd7ada104a7274e9cd030a3</originalsourceid><addsrcrecordid>eNqNkU1vGyEQhlHVSnXT_oMekHKs1hk-dtm9RIqsfkSKlEt7RhhmXbY2OIDj-N-XZKMco5xA8D4zwwMhXxksGbDuYlr-CzGf8pIDZ_WoU2J4RxasV7xREob3ZAFDC42Cln0kn3KeAIBz1i_IdEVtDAUfSmOOJiF1_h5T9uXUxOSx3jhaix-36DZIE9q422FwpvgYqNnvUzT2Lx1jonlnUqEYNj4gJh82NMft4SnnMPtN-Ew-jGab8cvzekb-_Pj-e_Wrubn9eb26ummslF1pcBBuLQGlRLSIynbCIO-c6EYurGida9e9gqEH65RxhoE0iiuJg3UgwIgzcj7XrcPdHTAXPcVDCrWl5i0w3nZcipqSc8qmmHPCUe-Tr084aQb60aqe9GxVP1rVs9WKfZuxI67jmG1VZPEFrVo7DrIdRN0Bq-n-7emVL09aV_EQSkUvZxSrqnuPST_jztdfKNpF__qk_wGbsKYy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501256243</pqid></control><display><type>article</type><title>A context-aware diversity-oriented knowledge recommendation approach for smart engineering solution design</title><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><creator>Li, Xinyu ; Chen, Chun-Hsien ; Zheng, Pai ; Jiang, Zuhua ; Wang, Linke</creator><creatorcontrib>Li, Xinyu ; Chen, Chun-Hsien ; Zheng, Pai ; Jiang, Zuhua ; Wang, Linke</creatorcontrib><description>To proactively fulfill multiple stakeholders’ needs in the engineering solution design process, the knowledge recommendation approach is adopted as a key element in the knowledge management system. Nevertheless, most existing knowledge recommendation approaches cannot simultaneously meet the higher standard of in-context accuracy and diversity. To address the issue, this paper proposes a context-aware diversity-oriented knowledge recommendation approach, thereby assisting stakeholders to accomplish engineering solution design in a smarter manner. Three diversity concerns, namely item-diversity, context-diversity, and user-diversity are addressed by semantic-based content analysis, context definition and awareness, and user profile modeling, respectively. Hence, the proposed approach not only maximizes the diversity of the recommended knowledge but also guarantees its accuracy under multiple problem-solving contexts. Moreover, a practical engineering solution design case on a Smart 3D printer platform is conducted, to validate the efficacy of the proposed approach in providing usable and diverse knowledge items. It is anticipated this work can provide useful insights to practitioners in their knowledge-based engineering solution design process.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2021.106739</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Computer Science ; Computer Science, Artificial Intelligence ; Content analysis ; Context ; Context-aware ; Diversity ; Engineering ; Engineering knowledge ; Engineering solution design ; Knowledge based engineering ; Knowledge management ; Knowledge recommendation ; Problem solving ; Science & Technology ; Technology ; Three dimensional printing</subject><ispartof>Knowledge-based systems, 2021-03, Vol.215, p.106739, Article 106739</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Mar 8, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>56</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000620459300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c446t-e93db40e44eecee7c63ae26d36f23c35dd5b870980cd7ada104a7274e9cd030a3</citedby><cites>FETCH-LOGICAL-c446t-e93db40e44eecee7c63ae26d36f23c35dd5b870980cd7ada104a7274e9cd030a3</cites><orcidid>0000-0002-4117-9698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2021.106739$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000</link.rule.ids></links><search><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Chen, Chun-Hsien</creatorcontrib><creatorcontrib>Zheng, Pai</creatorcontrib><creatorcontrib>Jiang, Zuhua</creatorcontrib><creatorcontrib>Wang, Linke</creatorcontrib><title>A context-aware diversity-oriented knowledge recommendation approach for smart engineering solution design</title><title>Knowledge-based systems</title><addtitle>KNOWL-BASED SYST</addtitle><description>To proactively fulfill multiple stakeholders’ needs in the engineering solution design process, the knowledge recommendation approach is adopted as a key element in the knowledge management system. Nevertheless, most existing knowledge recommendation approaches cannot simultaneously meet the higher standard of in-context accuracy and diversity. To address the issue, this paper proposes a context-aware diversity-oriented knowledge recommendation approach, thereby assisting stakeholders to accomplish engineering solution design in a smarter manner. Three diversity concerns, namely item-diversity, context-diversity, and user-diversity are addressed by semantic-based content analysis, context definition and awareness, and user profile modeling, respectively. Hence, the proposed approach not only maximizes the diversity of the recommended knowledge but also guarantees its accuracy under multiple problem-solving contexts. Moreover, a practical engineering solution design case on a Smart 3D printer platform is conducted, to validate the efficacy of the proposed approach in providing usable and diverse knowledge items. It is anticipated this work can provide useful insights to practitioners in their knowledge-based engineering solution design process.</description><subject>Computer Science</subject><subject>Computer Science, Artificial Intelligence</subject><subject>Content analysis</subject><subject>Context</subject><subject>Context-aware</subject><subject>Diversity</subject><subject>Engineering</subject><subject>Engineering knowledge</subject><subject>Engineering solution design</subject><subject>Knowledge based engineering</subject><subject>Knowledge management</subject><subject>Knowledge recommendation</subject><subject>Problem solving</subject><subject>Science & Technology</subject><subject>Technology</subject><subject>Three dimensional printing</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkU1vGyEQhlHVSnXT_oMekHKs1hk-dtm9RIqsfkSKlEt7RhhmXbY2OIDj-N-XZKMco5xA8D4zwwMhXxksGbDuYlr-CzGf8pIDZ_WoU2J4RxasV7xREob3ZAFDC42Cln0kn3KeAIBz1i_IdEVtDAUfSmOOJiF1_h5T9uXUxOSx3jhaix-36DZIE9q422FwpvgYqNnvUzT2Lx1jonlnUqEYNj4gJh82NMft4SnnMPtN-Ew-jGab8cvzekb-_Pj-e_Wrubn9eb26ummslF1pcBBuLQGlRLSIynbCIO-c6EYurGida9e9gqEH65RxhoE0iiuJg3UgwIgzcj7XrcPdHTAXPcVDCrWl5i0w3nZcipqSc8qmmHPCUe-Tr084aQb60aqe9GxVP1rVs9WKfZuxI67jmG1VZPEFrVo7DrIdRN0Bq-n-7emVL09aV_EQSkUvZxSrqnuPST_jztdfKNpF__qk_wGbsKYy</recordid><startdate>20210305</startdate><enddate>20210305</enddate><creator>Li, Xinyu</creator><creator>Chen, Chun-Hsien</creator><creator>Zheng, Pai</creator><creator>Jiang, Zuhua</creator><creator>Wang, Linke</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4117-9698</orcidid></search><sort><creationdate>20210305</creationdate><title>A context-aware diversity-oriented knowledge recommendation approach for smart engineering solution design</title><author>Li, Xinyu ; Chen, Chun-Hsien ; Zheng, Pai ; Jiang, Zuhua ; Wang, Linke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-e93db40e44eecee7c63ae26d36f23c35dd5b870980cd7ada104a7274e9cd030a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Science</topic><topic>Computer Science, Artificial Intelligence</topic><topic>Content analysis</topic><topic>Context</topic><topic>Context-aware</topic><topic>Diversity</topic><topic>Engineering</topic><topic>Engineering knowledge</topic><topic>Engineering solution design</topic><topic>Knowledge based engineering</topic><topic>Knowledge management</topic><topic>Knowledge recommendation</topic><topic>Problem solving</topic><topic>Science & Technology</topic><topic>Technology</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Chen, Chun-Hsien</creatorcontrib><creatorcontrib>Zheng, Pai</creatorcontrib><creatorcontrib>Jiang, Zuhua</creatorcontrib><creatorcontrib>Wang, Linke</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xinyu</au><au>Chen, Chun-Hsien</au><au>Zheng, Pai</au><au>Jiang, Zuhua</au><au>Wang, Linke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A context-aware diversity-oriented knowledge recommendation approach for smart engineering solution design</atitle><jtitle>Knowledge-based systems</jtitle><stitle>KNOWL-BASED SYST</stitle><date>2021-03-05</date><risdate>2021</risdate><volume>215</volume><spage>106739</spage><pages>106739-</pages><artnum>106739</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>To proactively fulfill multiple stakeholders’ needs in the engineering solution design process, the knowledge recommendation approach is adopted as a key element in the knowledge management system. Nevertheless, most existing knowledge recommendation approaches cannot simultaneously meet the higher standard of in-context accuracy and diversity. To address the issue, this paper proposes a context-aware diversity-oriented knowledge recommendation approach, thereby assisting stakeholders to accomplish engineering solution design in a smarter manner. Three diversity concerns, namely item-diversity, context-diversity, and user-diversity are addressed by semantic-based content analysis, context definition and awareness, and user profile modeling, respectively. Hence, the proposed approach not only maximizes the diversity of the recommended knowledge but also guarantees its accuracy under multiple problem-solving contexts. Moreover, a practical engineering solution design case on a Smart 3D printer platform is conducted, to validate the efficacy of the proposed approach in providing usable and diverse knowledge items. It is anticipated this work can provide useful insights to practitioners in their knowledge-based engineering solution design process.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2021.106739</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4117-9698</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-7051 |
ispartof | Knowledge-based systems, 2021-03, Vol.215, p.106739, Article 106739 |
issn | 0950-7051 1872-7409 |
language | eng |
recordid | cdi_webofscience_primary_000620459300001 |
source | Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier) |
subjects | Computer Science Computer Science, Artificial Intelligence Content analysis Context Context-aware Diversity Engineering Engineering knowledge Engineering solution design Knowledge based engineering Knowledge management Knowledge recommendation Problem solving Science & Technology Technology Three dimensional printing |
title | A context-aware diversity-oriented knowledge recommendation approach for smart engineering solution design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T20%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20context-aware%20diversity-oriented%20knowledge%20recommendation%20approach%20for%20smart%20engineering%20solution%20design&rft.jtitle=Knowledge-based%20systems&rft.au=Li,%20Xinyu&rft.date=2021-03-05&rft.volume=215&rft.spage=106739&rft.pages=106739-&rft.artnum=106739&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2021.106739&rft_dat=%3Cproquest_webof%3E2501256243%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501256243&rft_id=info:pmid/&rft_els_id=S0950705121000022&rfr_iscdi=true |