Effect of ACG-1, an Extract Blend of Angelica gigas , Cynanchum wilfordii , and Ginkgo biloba , on Blood Circulation Improvement Via Antiplatelet Aggregation and Antihyperlipidemia
Thrombosis causes poor blood circulation, which may lead to several cardiovascular disorders. Antiplatelet aggregation and antihyperlipidemia are the key processes that improve blood circulation. The antiplatelet aggregation and antihyperlipidemic effects of ACG-1, a mixture of , , and extracts, wer...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal food 2021, 24(2), , pp.135-144 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thrombosis causes poor blood circulation, which may lead to several cardiovascular disorders. Antiplatelet aggregation and antihyperlipidemia are the key processes that improve blood circulation. The antiplatelet aggregation and antihyperlipidemic effects of ACG-1, a mixture of
,
, and
extracts, were investigated in this study. The antiplatelet aggregation activity of ACG-1 was determined by studying its effects on collagen-induced platelet aggregation in human platelet-rich plasma (PRP). In addition, the effects of ACG-1 were investigated in a thromboembolism mouse model. The high-fat diet (HFD)-fed mouse model was used to investigate the antihyperlipidemic effects of ACG-1 and western blotting assay was performed to elucidate its mechanism of action. It was observed that ACG-1 significantly inhibited platelet aggregation in human PRP. Furthermore, ACG-1 showed protective effects in a thromboembolism mouse model induced by administering a mixed collagen and epinephrine intravenous injection. Oral administration of ACG-1 also significantly ameliorated blood lipid profiles in the HFD-fed mouse model. In conclusion, ACG-1 should be considered a powerful functional food to improve blood circulation. |
---|---|
ISSN: | 1096-620X 1557-7600 |
DOI: | 10.1089/jmf.2020.4852 |