Multilayer Graphene Sheet with Conical Nanopores as a Membrane for High-Permeance Molecular Separation

Mitigating leaks through permeable defects by stacking graphene layers would greatly reduce the molecular permeance through porous graphene membranes for gas separation. We propose a multilayer graphene membrane with conical nanopores which instead presents an ultrahigh molecular permeance even high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2021-02, Vol.125 (5), p.3047-3054
Hauptverfasser: Sun, Chengzhen, Zhou, Runfeng, Bai, Bofeng, Lin, Yuansheng, Li, Bangming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3054
container_issue 5
container_start_page 3047
container_title Journal of physical chemistry. C
container_volume 125
creator Sun, Chengzhen
Zhou, Runfeng
Bai, Bofeng
Lin, Yuansheng
Li, Bangming
description Mitigating leaks through permeable defects by stacking graphene layers would greatly reduce the molecular permeance through porous graphene membranes for gas separation. We propose a multilayer graphene membrane with conical nanopores which instead presents an ultrahigh molecular permeance even higher than those of single-layer graphene membranes. Comparison with existing experimental data also shows that such membranes present an excellent separation performance in the aspect of molecular permeance. The highly permeable conical nanopore is particularly promising for the strongly adsorbed gases on the graphene surface, such as CO2 and H2S. The underlying mechanisms are revealed by using molecular dynamics simulations, including (1) a large permeable area in the penetration side and (2) low permeation resistance caused by molecular bouncing in the nanopore for finding a possibility of permeation. The proposed conical nanopore can not only improve the molecular permeance through the defect-free and easy-fabricated multilayer graphene membranes but also provide a good example for the applications involving molecular permeation through nanopores.
doi_str_mv 10.1021/acs.jpcc.0c10717
format Article
fullrecord <record><control><sourceid>acs_webof</sourceid><recordid>TN_cdi_webofscience_primary_000619760700024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b295541823</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-40dbc6c828a8fda09b1c8b07371f90ffe1adbc91760ff4781a86e03ff0a8464c3</originalsourceid><addsrcrecordid>eNqNkN9LwzAQx4soOKfvPuZdOy9t16SPUnQTNhWmz-WaXVxG15S0Zey_N_vB3gQhkAt8P7m7TxDccxhxiPgTqna0bpQageIguLgIBjyLo1Ak4_HluU7EdXDTtmuAcQw8HgR63ledqXBHjk0cNiuqiS1WRB3bmm7FclsbhRV7x9o21lHL0B82p03p0Ee1dWxqflbhJ7kNYa2IzW1Fqq_QsQU16LAztr4NrjRWLd2d7mHw_frylU_D2cfkLX-ehRhJ6MIElqVKlYwkSr1EyEquZAkiFlxnoDVx9IGMi9Q_EiE5ypQg1hpQJmmi4mEAx3-Vs23rSBeNMxt0u4JDsfdUeE_F3lNx8uSRhyOypdLqVhnyS5wxAEh55vsJX0WJT8v_p3PTHbbPbV93Hn08oocRbO9qb-LvuX4B84KOYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multilayer Graphene Sheet with Conical Nanopores as a Membrane for High-Permeance Molecular Separation</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>American Chemical Society Journals</source><creator>Sun, Chengzhen ; Zhou, Runfeng ; Bai, Bofeng ; Lin, Yuansheng ; Li, Bangming</creator><creatorcontrib>Sun, Chengzhen ; Zhou, Runfeng ; Bai, Bofeng ; Lin, Yuansheng ; Li, Bangming</creatorcontrib><description>Mitigating leaks through permeable defects by stacking graphene layers would greatly reduce the molecular permeance through porous graphene membranes for gas separation. We propose a multilayer graphene membrane with conical nanopores which instead presents an ultrahigh molecular permeance even higher than those of single-layer graphene membranes. Comparison with existing experimental data also shows that such membranes present an excellent separation performance in the aspect of molecular permeance. The highly permeable conical nanopore is particularly promising for the strongly adsorbed gases on the graphene surface, such as CO2 and H2S. The underlying mechanisms are revealed by using molecular dynamics simulations, including (1) a large permeable area in the penetration side and (2) low permeation resistance caused by molecular bouncing in the nanopore for finding a possibility of permeation. The proposed conical nanopore can not only improve the molecular permeance through the defect-free and easy-fabricated multilayer graphene membranes but also provide a good example for the applications involving molecular permeation through nanopores.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.0c10717</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>C: Chemical and Catalytic Reactivity at Interfaces ; Chemistry ; Chemistry, Physical ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience &amp; Nanotechnology ; Physical Sciences ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology</subject><ispartof>Journal of physical chemistry. C, 2021-02, Vol.125 (5), p.3047-3054</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000619760700024</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a280t-40dbc6c828a8fda09b1c8b07371f90ffe1adbc91760ff4781a86e03ff0a8464c3</citedby><cites>FETCH-LOGICAL-a280t-40dbc6c828a8fda09b1c8b07371f90ffe1adbc91760ff4781a86e03ff0a8464c3</cites><orcidid>0000-0001-7562-0771 ; 0000-0002-1399-0731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.0c10717$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.0c10717$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,39263,56743,56793</link.rule.ids></links><search><creatorcontrib>Sun, Chengzhen</creatorcontrib><creatorcontrib>Zhou, Runfeng</creatorcontrib><creatorcontrib>Bai, Bofeng</creatorcontrib><creatorcontrib>Lin, Yuansheng</creatorcontrib><creatorcontrib>Li, Bangming</creatorcontrib><title>Multilayer Graphene Sheet with Conical Nanopores as a Membrane for High-Permeance Molecular Separation</title><title>Journal of physical chemistry. C</title><addtitle>J PHYS CHEM C</addtitle><addtitle>J. Phys. Chem. C</addtitle><description>Mitigating leaks through permeable defects by stacking graphene layers would greatly reduce the molecular permeance through porous graphene membranes for gas separation. We propose a multilayer graphene membrane with conical nanopores which instead presents an ultrahigh molecular permeance even higher than those of single-layer graphene membranes. Comparison with existing experimental data also shows that such membranes present an excellent separation performance in the aspect of molecular permeance. The highly permeable conical nanopore is particularly promising for the strongly adsorbed gases on the graphene surface, such as CO2 and H2S. The underlying mechanisms are revealed by using molecular dynamics simulations, including (1) a large permeable area in the penetration side and (2) low permeation resistance caused by molecular bouncing in the nanopore for finding a possibility of permeation. The proposed conical nanopore can not only improve the molecular permeance through the defect-free and easy-fabricated multilayer graphene membranes but also provide a good example for the applications involving molecular permeation through nanopores.</description><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkN9LwzAQx4soOKfvPuZdOy9t16SPUnQTNhWmz-WaXVxG15S0Zey_N_vB3gQhkAt8P7m7TxDccxhxiPgTqna0bpQageIguLgIBjyLo1Ak4_HluU7EdXDTtmuAcQw8HgR63ledqXBHjk0cNiuqiS1WRB3bmm7FclsbhRV7x9o21lHL0B82p03p0Ee1dWxqflbhJ7kNYa2IzW1Fqq_QsQU16LAztr4NrjRWLd2d7mHw_frylU_D2cfkLX-ehRhJ6MIElqVKlYwkSr1EyEquZAkiFlxnoDVx9IGMi9Q_EiE5ypQg1hpQJmmi4mEAx3-Vs23rSBeNMxt0u4JDsfdUeE_F3lNx8uSRhyOypdLqVhnyS5wxAEh55vsJX0WJT8v_p3PTHbbPbV93Hn08oocRbO9qb-LvuX4B84KOYA</recordid><startdate>20210211</startdate><enddate>20210211</enddate><creator>Sun, Chengzhen</creator><creator>Zhou, Runfeng</creator><creator>Bai, Bofeng</creator><creator>Lin, Yuansheng</creator><creator>Li, Bangming</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7562-0771</orcidid><orcidid>https://orcid.org/0000-0002-1399-0731</orcidid></search><sort><creationdate>20210211</creationdate><title>Multilayer Graphene Sheet with Conical Nanopores as a Membrane for High-Permeance Molecular Separation</title><author>Sun, Chengzhen ; Zhou, Runfeng ; Bai, Bofeng ; Lin, Yuansheng ; Li, Bangming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-40dbc6c828a8fda09b1c8b07371f90ffe1adbc91760ff4781a86e03ff0a8464c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C: Chemical and Catalytic Reactivity at Interfaces</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Chengzhen</creatorcontrib><creatorcontrib>Zhou, Runfeng</creatorcontrib><creatorcontrib>Bai, Bofeng</creatorcontrib><creatorcontrib>Lin, Yuansheng</creatorcontrib><creatorcontrib>Li, Bangming</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Chengzhen</au><au>Zhou, Runfeng</au><au>Bai, Bofeng</au><au>Lin, Yuansheng</au><au>Li, Bangming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multilayer Graphene Sheet with Conical Nanopores as a Membrane for High-Permeance Molecular Separation</atitle><jtitle>Journal of physical chemistry. C</jtitle><stitle>J PHYS CHEM C</stitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-02-11</date><risdate>2021</risdate><volume>125</volume><issue>5</issue><spage>3047</spage><epage>3054</epage><pages>3047-3054</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Mitigating leaks through permeable defects by stacking graphene layers would greatly reduce the molecular permeance through porous graphene membranes for gas separation. We propose a multilayer graphene membrane with conical nanopores which instead presents an ultrahigh molecular permeance even higher than those of single-layer graphene membranes. Comparison with existing experimental data also shows that such membranes present an excellent separation performance in the aspect of molecular permeance. The highly permeable conical nanopore is particularly promising for the strongly adsorbed gases on the graphene surface, such as CO2 and H2S. The underlying mechanisms are revealed by using molecular dynamics simulations, including (1) a large permeable area in the penetration side and (2) low permeation resistance caused by molecular bouncing in the nanopore for finding a possibility of permeation. The proposed conical nanopore can not only improve the molecular permeance through the defect-free and easy-fabricated multilayer graphene membranes but also provide a good example for the applications involving molecular permeation through nanopores.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.0c10717</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7562-0771</orcidid><orcidid>https://orcid.org/0000-0002-1399-0731</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2021-02, Vol.125 (5), p.3047-3054
issn 1932-7447
1932-7455
language eng
recordid cdi_webofscience_primary_000619760700024
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; American Chemical Society Journals
subjects C: Chemical and Catalytic Reactivity at Interfaces
Chemistry
Chemistry, Physical
Materials Science
Materials Science, Multidisciplinary
Nanoscience & Nanotechnology
Physical Sciences
Science & Technology
Science & Technology - Other Topics
Technology
title Multilayer Graphene Sheet with Conical Nanopores as a Membrane for High-Permeance Molecular Separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T04%3A01%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multilayer%20Graphene%20Sheet%20with%20Conical%20Nanopores%20as%20a%20Membrane%20for%20High-Permeance%20Molecular%20Separation&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Sun,%20Chengzhen&rft.date=2021-02-11&rft.volume=125&rft.issue=5&rft.spage=3047&rft.epage=3054&rft.pages=3047-3054&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.0c10717&rft_dat=%3Cacs_webof%3Eb295541823%3C/acs_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true