Multilayer Graphene Sheet with Conical Nanopores as a Membrane for High-Permeance Molecular Separation
Mitigating leaks through permeable defects by stacking graphene layers would greatly reduce the molecular permeance through porous graphene membranes for gas separation. We propose a multilayer graphene membrane with conical nanopores which instead presents an ultrahigh molecular permeance even high...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2021-02, Vol.125 (5), p.3047-3054 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3054 |
---|---|
container_issue | 5 |
container_start_page | 3047 |
container_title | Journal of physical chemistry. C |
container_volume | 125 |
creator | Sun, Chengzhen Zhou, Runfeng Bai, Bofeng Lin, Yuansheng Li, Bangming |
description | Mitigating leaks through permeable defects by stacking graphene layers would greatly reduce the molecular permeance through porous graphene membranes for gas separation. We propose a multilayer graphene membrane with conical nanopores which instead presents an ultrahigh molecular permeance even higher than those of single-layer graphene membranes. Comparison with existing experimental data also shows that such membranes present an excellent separation performance in the aspect of molecular permeance. The highly permeable conical nanopore is particularly promising for the strongly adsorbed gases on the graphene surface, such as CO2 and H2S. The underlying mechanisms are revealed by using molecular dynamics simulations, including (1) a large permeable area in the penetration side and (2) low permeation resistance caused by molecular bouncing in the nanopore for finding a possibility of permeation. The proposed conical nanopore can not only improve the molecular permeance through the defect-free and easy-fabricated multilayer graphene membranes but also provide a good example for the applications involving molecular permeation through nanopores. |
doi_str_mv | 10.1021/acs.jpcc.0c10717 |
format | Article |
fullrecord | <record><control><sourceid>acs_webof</sourceid><recordid>TN_cdi_webofscience_primary_000619760700024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b295541823</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-40dbc6c828a8fda09b1c8b07371f90ffe1adbc91760ff4781a86e03ff0a8464c3</originalsourceid><addsrcrecordid>eNqNkN9LwzAQx4soOKfvPuZdOy9t16SPUnQTNhWmz-WaXVxG15S0Zey_N_vB3gQhkAt8P7m7TxDccxhxiPgTqna0bpQageIguLgIBjyLo1Ak4_HluU7EdXDTtmuAcQw8HgR63ledqXBHjk0cNiuqiS1WRB3bmm7FclsbhRV7x9o21lHL0B82p03p0Ee1dWxqflbhJ7kNYa2IzW1Fqq_QsQU16LAztr4NrjRWLd2d7mHw_frylU_D2cfkLX-ehRhJ6MIElqVKlYwkSr1EyEquZAkiFlxnoDVx9IGMi9Q_EiE5ypQg1hpQJmmi4mEAx3-Vs23rSBeNMxt0u4JDsfdUeE_F3lNx8uSRhyOypdLqVhnyS5wxAEh55vsJX0WJT8v_p3PTHbbPbV93Hn08oocRbO9qb-LvuX4B84KOYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multilayer Graphene Sheet with Conical Nanopores as a Membrane for High-Permeance Molecular Separation</title><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>American Chemical Society Journals</source><creator>Sun, Chengzhen ; Zhou, Runfeng ; Bai, Bofeng ; Lin, Yuansheng ; Li, Bangming</creator><creatorcontrib>Sun, Chengzhen ; Zhou, Runfeng ; Bai, Bofeng ; Lin, Yuansheng ; Li, Bangming</creatorcontrib><description>Mitigating leaks through permeable defects by stacking graphene layers would greatly reduce the molecular permeance through porous graphene membranes for gas separation. We propose a multilayer graphene membrane with conical nanopores which instead presents an ultrahigh molecular permeance even higher than those of single-layer graphene membranes. Comparison with existing experimental data also shows that such membranes present an excellent separation performance in the aspect of molecular permeance. The highly permeable conical nanopore is particularly promising for the strongly adsorbed gases on the graphene surface, such as CO2 and H2S. The underlying mechanisms are revealed by using molecular dynamics simulations, including (1) a large permeable area in the penetration side and (2) low permeation resistance caused by molecular bouncing in the nanopore for finding a possibility of permeation. The proposed conical nanopore can not only improve the molecular permeance through the defect-free and easy-fabricated multilayer graphene membranes but also provide a good example for the applications involving molecular permeation through nanopores.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.0c10717</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>C: Chemical and Catalytic Reactivity at Interfaces ; Chemistry ; Chemistry, Physical ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience & Nanotechnology ; Physical Sciences ; Science & Technology ; Science & Technology - Other Topics ; Technology</subject><ispartof>Journal of physical chemistry. C, 2021-02, Vol.125 (5), p.3047-3054</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000619760700024</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a280t-40dbc6c828a8fda09b1c8b07371f90ffe1adbc91760ff4781a86e03ff0a8464c3</citedby><cites>FETCH-LOGICAL-a280t-40dbc6c828a8fda09b1c8b07371f90ffe1adbc91760ff4781a86e03ff0a8464c3</cites><orcidid>0000-0001-7562-0771 ; 0000-0002-1399-0731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.0c10717$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.0c10717$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,39263,56743,56793</link.rule.ids></links><search><creatorcontrib>Sun, Chengzhen</creatorcontrib><creatorcontrib>Zhou, Runfeng</creatorcontrib><creatorcontrib>Bai, Bofeng</creatorcontrib><creatorcontrib>Lin, Yuansheng</creatorcontrib><creatorcontrib>Li, Bangming</creatorcontrib><title>Multilayer Graphene Sheet with Conical Nanopores as a Membrane for High-Permeance Molecular Separation</title><title>Journal of physical chemistry. C</title><addtitle>J PHYS CHEM C</addtitle><addtitle>J. Phys. Chem. C</addtitle><description>Mitigating leaks through permeable defects by stacking graphene layers would greatly reduce the molecular permeance through porous graphene membranes for gas separation. We propose a multilayer graphene membrane with conical nanopores which instead presents an ultrahigh molecular permeance even higher than those of single-layer graphene membranes. Comparison with existing experimental data also shows that such membranes present an excellent separation performance in the aspect of molecular permeance. The highly permeable conical nanopore is particularly promising for the strongly adsorbed gases on the graphene surface, such as CO2 and H2S. The underlying mechanisms are revealed by using molecular dynamics simulations, including (1) a large permeable area in the penetration side and (2) low permeation resistance caused by molecular bouncing in the nanopore for finding a possibility of permeation. The proposed conical nanopore can not only improve the molecular permeance through the defect-free and easy-fabricated multilayer graphene membranes but also provide a good example for the applications involving molecular permeation through nanopores.</description><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience & Nanotechnology</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Technology</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkN9LwzAQx4soOKfvPuZdOy9t16SPUnQTNhWmz-WaXVxG15S0Zey_N_vB3gQhkAt8P7m7TxDccxhxiPgTqna0bpQageIguLgIBjyLo1Ak4_HluU7EdXDTtmuAcQw8HgR63ledqXBHjk0cNiuqiS1WRB3bmm7FclsbhRV7x9o21lHL0B82p03p0Ee1dWxqflbhJ7kNYa2IzW1Fqq_QsQU16LAztr4NrjRWLd2d7mHw_frylU_D2cfkLX-ehRhJ6MIElqVKlYwkSr1EyEquZAkiFlxnoDVx9IGMi9Q_EiE5ypQg1hpQJmmi4mEAx3-Vs23rSBeNMxt0u4JDsfdUeE_F3lNx8uSRhyOypdLqVhnyS5wxAEh55vsJX0WJT8v_p3PTHbbPbV93Hn08oocRbO9qb-LvuX4B84KOYA</recordid><startdate>20210211</startdate><enddate>20210211</enddate><creator>Sun, Chengzhen</creator><creator>Zhou, Runfeng</creator><creator>Bai, Bofeng</creator><creator>Lin, Yuansheng</creator><creator>Li, Bangming</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7562-0771</orcidid><orcidid>https://orcid.org/0000-0002-1399-0731</orcidid></search><sort><creationdate>20210211</creationdate><title>Multilayer Graphene Sheet with Conical Nanopores as a Membrane for High-Permeance Molecular Separation</title><author>Sun, Chengzhen ; Zhou, Runfeng ; Bai, Bofeng ; Lin, Yuansheng ; Li, Bangming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-40dbc6c828a8fda09b1c8b07371f90ffe1adbc91760ff4781a86e03ff0a8464c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C: Chemical and Catalytic Reactivity at Interfaces</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience & Nanotechnology</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Chengzhen</creatorcontrib><creatorcontrib>Zhou, Runfeng</creatorcontrib><creatorcontrib>Bai, Bofeng</creatorcontrib><creatorcontrib>Lin, Yuansheng</creatorcontrib><creatorcontrib>Li, Bangming</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Chengzhen</au><au>Zhou, Runfeng</au><au>Bai, Bofeng</au><au>Lin, Yuansheng</au><au>Li, Bangming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multilayer Graphene Sheet with Conical Nanopores as a Membrane for High-Permeance Molecular Separation</atitle><jtitle>Journal of physical chemistry. C</jtitle><stitle>J PHYS CHEM C</stitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-02-11</date><risdate>2021</risdate><volume>125</volume><issue>5</issue><spage>3047</spage><epage>3054</epage><pages>3047-3054</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Mitigating leaks through permeable defects by stacking graphene layers would greatly reduce the molecular permeance through porous graphene membranes for gas separation. We propose a multilayer graphene membrane with conical nanopores which instead presents an ultrahigh molecular permeance even higher than those of single-layer graphene membranes. Comparison with existing experimental data also shows that such membranes present an excellent separation performance in the aspect of molecular permeance. The highly permeable conical nanopore is particularly promising for the strongly adsorbed gases on the graphene surface, such as CO2 and H2S. The underlying mechanisms are revealed by using molecular dynamics simulations, including (1) a large permeable area in the penetration side and (2) low permeation resistance caused by molecular bouncing in the nanopore for finding a possibility of permeation. The proposed conical nanopore can not only improve the molecular permeance through the defect-free and easy-fabricated multilayer graphene membranes but also provide a good example for the applications involving molecular permeation through nanopores.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.0c10717</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7562-0771</orcidid><orcidid>https://orcid.org/0000-0002-1399-0731</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2021-02, Vol.125 (5), p.3047-3054 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_webofscience_primary_000619760700024 |
source | Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; American Chemical Society Journals |
subjects | C: Chemical and Catalytic Reactivity at Interfaces Chemistry Chemistry, Physical Materials Science Materials Science, Multidisciplinary Nanoscience & Nanotechnology Physical Sciences Science & Technology Science & Technology - Other Topics Technology |
title | Multilayer Graphene Sheet with Conical Nanopores as a Membrane for High-Permeance Molecular Separation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T04%3A01%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multilayer%20Graphene%20Sheet%20with%20Conical%20Nanopores%20as%20a%20Membrane%20for%20High-Permeance%20Molecular%20Separation&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Sun,%20Chengzhen&rft.date=2021-02-11&rft.volume=125&rft.issue=5&rft.spage=3047&rft.epage=3054&rft.pages=3047-3054&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.0c10717&rft_dat=%3Cacs_webof%3Eb295541823%3C/acs_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |