Microscopic equation of state of hot nuclear matter for numerical relativity simulations
Context. A precise understanding of the equation of state (EOS) of dense and hot matter is key to modeling relativistic astrophysical environments, including core-collapse supernovae (CCSNe), protoneutron star (PNSs) evolution, and compact binary mergers.Aims. In this paper, we extend the microscopi...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2021-02, Vol.646, p.A55, Article 55 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | A55 |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 646 |
creator | Logoteta, Domenico Perego, Albino Bombaci, Ignazio |
description | Context. A precise understanding of the equation of state (EOS) of dense and hot matter is key to modeling relativistic astrophysical environments, including core-collapse supernovae (CCSNe), protoneutron star (PNSs) evolution, and compact binary mergers.Aims. In this paper, we extend the microscopic zero-temperature BL (Bombaci and Logoteta) nuclear EOS to finite temperature and arbitrary nuclear composition. We employ this new EOS to describe hot beta -stable nuclear matter and to compute various structural properties of nonrotating PNS. We also apply the EOS to perform dynamical simulations of a spherically symmetric CCSN.Methods. The EOS is derived using the finite temperature extension of the Brueckner-Bethe-Goldstone quantum many-body theory in the Brueckner-Hartree-Fock approximation. Neutron star properties are computed by solving the Tolman-Oppenheimer-Volkoff structure equations numerically. The sperically symmetric CCSN simulations are performed using the AGILE-IDSA code.Results. Our EOS models are able to reproduce typical features of both PNS and spherically symmetric CCSN simulations. In addition, our EOS model is consistent with present measured neutron star masses and particularly with the masses: M=2.01 +/- 0.04 M-circle dot and
M = 2.14(-0.18)(+0.20)M(circle dot)
M = 2 .
14
- 0.18
+ 0.20
M circle dot
of the neutron stars in PSR J0348+0432 and PSR J0740+6620 respectively. Finally, we suggest a feasible mechanism to produce low-mass black holes (M similar to 2 M-circle dot) that could have far-reaching consequences for interpreting the gravitational wave event GW190814 as a BH-BH merger. |
doi_str_mv | 10.1051/0004-6361/202039457 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000617516100004CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494234945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-aa88d871945f8dcc710f7b83a22c421d4c9b0463b86b8f435e253c614e8fb9093</originalsourceid><addsrcrecordid>eNqNkEtPAyEUhYnRxFr9BW5IXJqxvIZhlmbiK6lxo4k7wlCINDNDC4ym_16mNV27uVzI-c7lHgCuMbrDqMQLhBArOOV4QRBBtGZldQJmmFFSoIrxUzA7Ks7BRYzrfCVY0Bn4fHU6-Kj9xmlotqNKzg_QWxiTSmZqvnyCw6g7owLsVUomQOtDfupNcFp1MJguU98u7WB0_djtLeIlOLOqi-bq75yDj8eH9-a5WL49vTT3y0JTIVKhlBArUeH8ZStWWlcY2aoVVBGiGcErpusWMU5bwVthGS0NKanmmBlh2xrVdA5uDr6b4LejiUmu_RiGPFISVjNCcymzih5U07IxGCs3wfUq7CRGcopQTgHJKSB5jDBT4kD9mNbbqJ0ZtDmSmeC4KjHHaIIbl_abN34cUkZv_4_SX2JbhN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494234945</pqid></control><display><type>article</type><title>Microscopic equation of state of hot nuclear matter for numerical relativity simulations</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>EDP Sciences</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Logoteta, Domenico ; Perego, Albino ; Bombaci, Ignazio</creator><creatorcontrib>Logoteta, Domenico ; Perego, Albino ; Bombaci, Ignazio</creatorcontrib><description>Context. A precise understanding of the equation of state (EOS) of dense and hot matter is key to modeling relativistic astrophysical environments, including core-collapse supernovae (CCSNe), protoneutron star (PNSs) evolution, and compact binary mergers.Aims. In this paper, we extend the microscopic zero-temperature BL (Bombaci and Logoteta) nuclear EOS to finite temperature and arbitrary nuclear composition. We employ this new EOS to describe hot beta -stable nuclear matter and to compute various structural properties of nonrotating PNS. We also apply the EOS to perform dynamical simulations of a spherically symmetric CCSN.Methods. The EOS is derived using the finite temperature extension of the Brueckner-Bethe-Goldstone quantum many-body theory in the Brueckner-Hartree-Fock approximation. Neutron star properties are computed by solving the Tolman-Oppenheimer-Volkoff structure equations numerically. The sperically symmetric CCSN simulations are performed using the AGILE-IDSA code.Results. Our EOS models are able to reproduce typical features of both PNS and spherically symmetric CCSN simulations. In addition, our EOS model is consistent with present measured neutron star masses and particularly with the masses: M=2.01 +/- 0.04 M-circle dot and
M = 2.14(-0.18)(+0.20)M(circle dot)
M = 2 .
14
- 0.18
+ 0.20
M circle dot
of the neutron stars in PSR J0348+0432 and PSR J0740+6620 respectively. Finally, we suggest a feasible mechanism to produce low-mass black holes (M similar to 2 M-circle dot) that could have far-reaching consequences for interpreting the gravitational wave event GW190814 as a BH-BH merger.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/202039457</identifier><language>eng</language><publisher>LES ULIS CEDEX A: Edp Sciences S A</publisher><subject>Astronomical models ; Astronomy & Astrophysics ; Binary stars ; Black holes ; Environment models ; Equations of state ; Gravitational waves ; Hartree approximation ; Neutron stars ; Neutrons ; Nuclear matter ; Numerical relativity ; Physical Sciences ; Relativity ; Science & Technology ; Simulation ; Stellar evolution ; Supernovae</subject><ispartof>Astronomy and astrophysics (Berlin), 2021-02, Vol.646, p.A55, Article 55</ispartof><rights>Copyright EDP Sciences Feb 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>37</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000617516100004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c388t-aa88d871945f8dcc710f7b83a22c421d4c9b0463b86b8f435e253c614e8fb9093</citedby><cites>FETCH-LOGICAL-c388t-aa88d871945f8dcc710f7b83a22c421d4c9b0463b86b8f435e253c614e8fb9093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,3729,27931,27932,39265</link.rule.ids></links><search><creatorcontrib>Logoteta, Domenico</creatorcontrib><creatorcontrib>Perego, Albino</creatorcontrib><creatorcontrib>Bombaci, Ignazio</creatorcontrib><title>Microscopic equation of state of hot nuclear matter for numerical relativity simulations</title><title>Astronomy and astrophysics (Berlin)</title><addtitle>ASTRON ASTROPHYS</addtitle><description>Context. A precise understanding of the equation of state (EOS) of dense and hot matter is key to modeling relativistic astrophysical environments, including core-collapse supernovae (CCSNe), protoneutron star (PNSs) evolution, and compact binary mergers.Aims. In this paper, we extend the microscopic zero-temperature BL (Bombaci and Logoteta) nuclear EOS to finite temperature and arbitrary nuclear composition. We employ this new EOS to describe hot beta -stable nuclear matter and to compute various structural properties of nonrotating PNS. We also apply the EOS to perform dynamical simulations of a spherically symmetric CCSN.Methods. The EOS is derived using the finite temperature extension of the Brueckner-Bethe-Goldstone quantum many-body theory in the Brueckner-Hartree-Fock approximation. Neutron star properties are computed by solving the Tolman-Oppenheimer-Volkoff structure equations numerically. The sperically symmetric CCSN simulations are performed using the AGILE-IDSA code.Results. Our EOS models are able to reproduce typical features of both PNS and spherically symmetric CCSN simulations. In addition, our EOS model is consistent with present measured neutron star masses and particularly with the masses: M=2.01 +/- 0.04 M-circle dot and
M = 2.14(-0.18)(+0.20)M(circle dot)
M = 2 .
14
- 0.18
+ 0.20
M circle dot
of the neutron stars in PSR J0348+0432 and PSR J0740+6620 respectively. Finally, we suggest a feasible mechanism to produce low-mass black holes (M similar to 2 M-circle dot) that could have far-reaching consequences for interpreting the gravitational wave event GW190814 as a BH-BH merger.</description><subject>Astronomical models</subject><subject>Astronomy & Astrophysics</subject><subject>Binary stars</subject><subject>Black holes</subject><subject>Environment models</subject><subject>Equations of state</subject><subject>Gravitational waves</subject><subject>Hartree approximation</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Nuclear matter</subject><subject>Numerical relativity</subject><subject>Physical Sciences</subject><subject>Relativity</subject><subject>Science & Technology</subject><subject>Simulation</subject><subject>Stellar evolution</subject><subject>Supernovae</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkEtPAyEUhYnRxFr9BW5IXJqxvIZhlmbiK6lxo4k7wlCINDNDC4ym_16mNV27uVzI-c7lHgCuMbrDqMQLhBArOOV4QRBBtGZldQJmmFFSoIrxUzA7Ks7BRYzrfCVY0Bn4fHU6-Kj9xmlotqNKzg_QWxiTSmZqvnyCw6g7owLsVUomQOtDfupNcFp1MJguU98u7WB0_djtLeIlOLOqi-bq75yDj8eH9-a5WL49vTT3y0JTIVKhlBArUeH8ZStWWlcY2aoVVBGiGcErpusWMU5bwVthGS0NKanmmBlh2xrVdA5uDr6b4LejiUmu_RiGPFISVjNCcymzih5U07IxGCs3wfUq7CRGcopQTgHJKSB5jDBT4kD9mNbbqJ0ZtDmSmeC4KjHHaIIbl_abN34cUkZv_4_SX2JbhN4</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Logoteta, Domenico</creator><creator>Perego, Albino</creator><creator>Bombaci, Ignazio</creator><general>Edp Sciences S A</general><general>EDP Sciences</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210201</creationdate><title>Microscopic equation of state of hot nuclear matter for numerical relativity simulations</title><author>Logoteta, Domenico ; Perego, Albino ; Bombaci, Ignazio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-aa88d871945f8dcc710f7b83a22c421d4c9b0463b86b8f435e253c614e8fb9093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomical models</topic><topic>Astronomy & Astrophysics</topic><topic>Binary stars</topic><topic>Black holes</topic><topic>Environment models</topic><topic>Equations of state</topic><topic>Gravitational waves</topic><topic>Hartree approximation</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Nuclear matter</topic><topic>Numerical relativity</topic><topic>Physical Sciences</topic><topic>Relativity</topic><topic>Science & Technology</topic><topic>Simulation</topic><topic>Stellar evolution</topic><topic>Supernovae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Logoteta, Domenico</creatorcontrib><creatorcontrib>Perego, Albino</creatorcontrib><creatorcontrib>Bombaci, Ignazio</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Logoteta, Domenico</au><au>Perego, Albino</au><au>Bombaci, Ignazio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microscopic equation of state of hot nuclear matter for numerical relativity simulations</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><stitle>ASTRON ASTROPHYS</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>646</volume><spage>A55</spage><pages>A55-</pages><artnum>55</artnum><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Context. A precise understanding of the equation of state (EOS) of dense and hot matter is key to modeling relativistic astrophysical environments, including core-collapse supernovae (CCSNe), protoneutron star (PNSs) evolution, and compact binary mergers.Aims. In this paper, we extend the microscopic zero-temperature BL (Bombaci and Logoteta) nuclear EOS to finite temperature and arbitrary nuclear composition. We employ this new EOS to describe hot beta -stable nuclear matter and to compute various structural properties of nonrotating PNS. We also apply the EOS to perform dynamical simulations of a spherically symmetric CCSN.Methods. The EOS is derived using the finite temperature extension of the Brueckner-Bethe-Goldstone quantum many-body theory in the Brueckner-Hartree-Fock approximation. Neutron star properties are computed by solving the Tolman-Oppenheimer-Volkoff structure equations numerically. The sperically symmetric CCSN simulations are performed using the AGILE-IDSA code.Results. Our EOS models are able to reproduce typical features of both PNS and spherically symmetric CCSN simulations. In addition, our EOS model is consistent with present measured neutron star masses and particularly with the masses: M=2.01 +/- 0.04 M-circle dot and
M = 2.14(-0.18)(+0.20)M(circle dot)
M = 2 .
14
- 0.18
+ 0.20
M circle dot
of the neutron stars in PSR J0348+0432 and PSR J0740+6620 respectively. Finally, we suggest a feasible mechanism to produce low-mass black holes (M similar to 2 M-circle dot) that could have far-reaching consequences for interpreting the gravitational wave event GW190814 as a BH-BH merger.</abstract><cop>LES ULIS CEDEX A</cop><pub>Edp Sciences S A</pub><doi>10.1051/0004-6361/202039457</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2021-02, Vol.646, p.A55, Article 55 |
issn | 0004-6361 1432-0746 |
language | eng |
recordid | cdi_webofscience_primary_000617516100004CitationCount |
source | Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; EDP Sciences; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Astronomical models Astronomy & Astrophysics Binary stars Black holes Environment models Equations of state Gravitational waves Hartree approximation Neutron stars Neutrons Nuclear matter Numerical relativity Physical Sciences Relativity Science & Technology Simulation Stellar evolution Supernovae |
title | Microscopic equation of state of hot nuclear matter for numerical relativity simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T18%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microscopic%20equation%20of%20state%20of%20hot%20nuclear%20matter%20for%20numerical%20relativity%20simulations&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Logoteta,%20Domenico&rft.date=2021-02-01&rft.volume=646&rft.spage=A55&rft.pages=A55-&rft.artnum=55&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202039457&rft_dat=%3Cproquest_webof%3E2494234945%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494234945&rft_id=info:pmid/&rfr_iscdi=true |