Microscopic equation of state of hot nuclear matter for numerical relativity simulations

Context. A precise understanding of the equation of state (EOS) of dense and hot matter is key to modeling relativistic astrophysical environments, including core-collapse supernovae (CCSNe), protoneutron star (PNSs) evolution, and compact binary mergers.Aims. In this paper, we extend the microscopi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2021-02, Vol.646, p.A55, Article 55
Hauptverfasser: Logoteta, Domenico, Perego, Albino, Bombaci, Ignazio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A55
container_title Astronomy and astrophysics (Berlin)
container_volume 646
creator Logoteta, Domenico
Perego, Albino
Bombaci, Ignazio
description Context. A precise understanding of the equation of state (EOS) of dense and hot matter is key to modeling relativistic astrophysical environments, including core-collapse supernovae (CCSNe), protoneutron star (PNSs) evolution, and compact binary mergers.Aims. In this paper, we extend the microscopic zero-temperature BL (Bombaci and Logoteta) nuclear EOS to finite temperature and arbitrary nuclear composition. We employ this new EOS to describe hot beta -stable nuclear matter and to compute various structural properties of nonrotating PNS. We also apply the EOS to perform dynamical simulations of a spherically symmetric CCSN.Methods. The EOS is derived using the finite temperature extension of the Brueckner-Bethe-Goldstone quantum many-body theory in the Brueckner-Hartree-Fock approximation. Neutron star properties are computed by solving the Tolman-Oppenheimer-Volkoff structure equations numerically. The sperically symmetric CCSN simulations are performed using the AGILE-IDSA code.Results. Our EOS models are able to reproduce typical features of both PNS and spherically symmetric CCSN simulations. In addition, our EOS model is consistent with present measured neutron star masses and particularly with the masses: M=2.01 +/- 0.04 M-circle dot and M = 2.14(-0.18)(+0.20)M(circle dot) M = 2 . 14 - 0.18 + 0.20 M circle dot of the neutron stars in PSR J0348+0432 and PSR J0740+6620 respectively. Finally, we suggest a feasible mechanism to produce low-mass black holes (M similar to 2 M-circle dot) that could have far-reaching consequences for interpreting the gravitational wave event GW190814 as a BH-BH merger.
doi_str_mv 10.1051/0004-6361/202039457
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000617516100004CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494234945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-aa88d871945f8dcc710f7b83a22c421d4c9b0463b86b8f435e253c614e8fb9093</originalsourceid><addsrcrecordid>eNqNkEtPAyEUhYnRxFr9BW5IXJqxvIZhlmbiK6lxo4k7wlCINDNDC4ym_16mNV27uVzI-c7lHgCuMbrDqMQLhBArOOV4QRBBtGZldQJmmFFSoIrxUzA7Ks7BRYzrfCVY0Bn4fHU6-Kj9xmlotqNKzg_QWxiTSmZqvnyCw6g7owLsVUomQOtDfupNcFp1MJguU98u7WB0_djtLeIlOLOqi-bq75yDj8eH9-a5WL49vTT3y0JTIVKhlBArUeH8ZStWWlcY2aoVVBGiGcErpusWMU5bwVthGS0NKanmmBlh2xrVdA5uDr6b4LejiUmu_RiGPFISVjNCcymzih5U07IxGCs3wfUq7CRGcopQTgHJKSB5jDBT4kD9mNbbqJ0ZtDmSmeC4KjHHaIIbl_abN34cUkZv_4_SX2JbhN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494234945</pqid></control><display><type>article</type><title>Microscopic equation of state of hot nuclear matter for numerical relativity simulations</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>EDP Sciences</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Logoteta, Domenico ; Perego, Albino ; Bombaci, Ignazio</creator><creatorcontrib>Logoteta, Domenico ; Perego, Albino ; Bombaci, Ignazio</creatorcontrib><description>Context. A precise understanding of the equation of state (EOS) of dense and hot matter is key to modeling relativistic astrophysical environments, including core-collapse supernovae (CCSNe), protoneutron star (PNSs) evolution, and compact binary mergers.Aims. In this paper, we extend the microscopic zero-temperature BL (Bombaci and Logoteta) nuclear EOS to finite temperature and arbitrary nuclear composition. We employ this new EOS to describe hot beta -stable nuclear matter and to compute various structural properties of nonrotating PNS. We also apply the EOS to perform dynamical simulations of a spherically symmetric CCSN.Methods. The EOS is derived using the finite temperature extension of the Brueckner-Bethe-Goldstone quantum many-body theory in the Brueckner-Hartree-Fock approximation. Neutron star properties are computed by solving the Tolman-Oppenheimer-Volkoff structure equations numerically. The sperically symmetric CCSN simulations are performed using the AGILE-IDSA code.Results. Our EOS models are able to reproduce typical features of both PNS and spherically symmetric CCSN simulations. In addition, our EOS model is consistent with present measured neutron star masses and particularly with the masses: M=2.01 +/- 0.04 M-circle dot and M = 2.14(-0.18)(+0.20)M(circle dot) M = 2 . 14 - 0.18 + 0.20 M circle dot of the neutron stars in PSR J0348+0432 and PSR J0740+6620 respectively. Finally, we suggest a feasible mechanism to produce low-mass black holes (M similar to 2 M-circle dot) that could have far-reaching consequences for interpreting the gravitational wave event GW190814 as a BH-BH merger.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/202039457</identifier><language>eng</language><publisher>LES ULIS CEDEX A: Edp Sciences S A</publisher><subject>Astronomical models ; Astronomy &amp; Astrophysics ; Binary stars ; Black holes ; Environment models ; Equations of state ; Gravitational waves ; Hartree approximation ; Neutron stars ; Neutrons ; Nuclear matter ; Numerical relativity ; Physical Sciences ; Relativity ; Science &amp; Technology ; Simulation ; Stellar evolution ; Supernovae</subject><ispartof>Astronomy and astrophysics (Berlin), 2021-02, Vol.646, p.A55, Article 55</ispartof><rights>Copyright EDP Sciences Feb 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>37</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000617516100004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c388t-aa88d871945f8dcc710f7b83a22c421d4c9b0463b86b8f435e253c614e8fb9093</citedby><cites>FETCH-LOGICAL-c388t-aa88d871945f8dcc710f7b83a22c421d4c9b0463b86b8f435e253c614e8fb9093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,3729,27931,27932,39265</link.rule.ids></links><search><creatorcontrib>Logoteta, Domenico</creatorcontrib><creatorcontrib>Perego, Albino</creatorcontrib><creatorcontrib>Bombaci, Ignazio</creatorcontrib><title>Microscopic equation of state of hot nuclear matter for numerical relativity simulations</title><title>Astronomy and astrophysics (Berlin)</title><addtitle>ASTRON ASTROPHYS</addtitle><description>Context. A precise understanding of the equation of state (EOS) of dense and hot matter is key to modeling relativistic astrophysical environments, including core-collapse supernovae (CCSNe), protoneutron star (PNSs) evolution, and compact binary mergers.Aims. In this paper, we extend the microscopic zero-temperature BL (Bombaci and Logoteta) nuclear EOS to finite temperature and arbitrary nuclear composition. We employ this new EOS to describe hot beta -stable nuclear matter and to compute various structural properties of nonrotating PNS. We also apply the EOS to perform dynamical simulations of a spherically symmetric CCSN.Methods. The EOS is derived using the finite temperature extension of the Brueckner-Bethe-Goldstone quantum many-body theory in the Brueckner-Hartree-Fock approximation. Neutron star properties are computed by solving the Tolman-Oppenheimer-Volkoff structure equations numerically. The sperically symmetric CCSN simulations are performed using the AGILE-IDSA code.Results. Our EOS models are able to reproduce typical features of both PNS and spherically symmetric CCSN simulations. In addition, our EOS model is consistent with present measured neutron star masses and particularly with the masses: M=2.01 +/- 0.04 M-circle dot and M = 2.14(-0.18)(+0.20)M(circle dot) M = 2 . 14 - 0.18 + 0.20 M circle dot of the neutron stars in PSR J0348+0432 and PSR J0740+6620 respectively. Finally, we suggest a feasible mechanism to produce low-mass black holes (M similar to 2 M-circle dot) that could have far-reaching consequences for interpreting the gravitational wave event GW190814 as a BH-BH merger.</description><subject>Astronomical models</subject><subject>Astronomy &amp; Astrophysics</subject><subject>Binary stars</subject><subject>Black holes</subject><subject>Environment models</subject><subject>Equations of state</subject><subject>Gravitational waves</subject><subject>Hartree approximation</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Nuclear matter</subject><subject>Numerical relativity</subject><subject>Physical Sciences</subject><subject>Relativity</subject><subject>Science &amp; Technology</subject><subject>Simulation</subject><subject>Stellar evolution</subject><subject>Supernovae</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkEtPAyEUhYnRxFr9BW5IXJqxvIZhlmbiK6lxo4k7wlCINDNDC4ym_16mNV27uVzI-c7lHgCuMbrDqMQLhBArOOV4QRBBtGZldQJmmFFSoIrxUzA7Ks7BRYzrfCVY0Bn4fHU6-Kj9xmlotqNKzg_QWxiTSmZqvnyCw6g7owLsVUomQOtDfupNcFp1MJguU98u7WB0_djtLeIlOLOqi-bq75yDj8eH9-a5WL49vTT3y0JTIVKhlBArUeH8ZStWWlcY2aoVVBGiGcErpusWMU5bwVthGS0NKanmmBlh2xrVdA5uDr6b4LejiUmu_RiGPFISVjNCcymzih5U07IxGCs3wfUq7CRGcopQTgHJKSB5jDBT4kD9mNbbqJ0ZtDmSmeC4KjHHaIIbl_abN34cUkZv_4_SX2JbhN4</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Logoteta, Domenico</creator><creator>Perego, Albino</creator><creator>Bombaci, Ignazio</creator><general>Edp Sciences S A</general><general>EDP Sciences</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210201</creationdate><title>Microscopic equation of state of hot nuclear matter for numerical relativity simulations</title><author>Logoteta, Domenico ; Perego, Albino ; Bombaci, Ignazio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-aa88d871945f8dcc710f7b83a22c421d4c9b0463b86b8f435e253c614e8fb9093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomical models</topic><topic>Astronomy &amp; Astrophysics</topic><topic>Binary stars</topic><topic>Black holes</topic><topic>Environment models</topic><topic>Equations of state</topic><topic>Gravitational waves</topic><topic>Hartree approximation</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Nuclear matter</topic><topic>Numerical relativity</topic><topic>Physical Sciences</topic><topic>Relativity</topic><topic>Science &amp; Technology</topic><topic>Simulation</topic><topic>Stellar evolution</topic><topic>Supernovae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Logoteta, Domenico</creatorcontrib><creatorcontrib>Perego, Albino</creatorcontrib><creatorcontrib>Bombaci, Ignazio</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Logoteta, Domenico</au><au>Perego, Albino</au><au>Bombaci, Ignazio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microscopic equation of state of hot nuclear matter for numerical relativity simulations</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><stitle>ASTRON ASTROPHYS</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>646</volume><spage>A55</spage><pages>A55-</pages><artnum>55</artnum><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Context. A precise understanding of the equation of state (EOS) of dense and hot matter is key to modeling relativistic astrophysical environments, including core-collapse supernovae (CCSNe), protoneutron star (PNSs) evolution, and compact binary mergers.Aims. In this paper, we extend the microscopic zero-temperature BL (Bombaci and Logoteta) nuclear EOS to finite temperature and arbitrary nuclear composition. We employ this new EOS to describe hot beta -stable nuclear matter and to compute various structural properties of nonrotating PNS. We also apply the EOS to perform dynamical simulations of a spherically symmetric CCSN.Methods. The EOS is derived using the finite temperature extension of the Brueckner-Bethe-Goldstone quantum many-body theory in the Brueckner-Hartree-Fock approximation. Neutron star properties are computed by solving the Tolman-Oppenheimer-Volkoff structure equations numerically. The sperically symmetric CCSN simulations are performed using the AGILE-IDSA code.Results. Our EOS models are able to reproduce typical features of both PNS and spherically symmetric CCSN simulations. In addition, our EOS model is consistent with present measured neutron star masses and particularly with the masses: M=2.01 +/- 0.04 M-circle dot and M = 2.14(-0.18)(+0.20)M(circle dot) M = 2 . 14 - 0.18 + 0.20 M circle dot of the neutron stars in PSR J0348+0432 and PSR J0740+6620 respectively. Finally, we suggest a feasible mechanism to produce low-mass black holes (M similar to 2 M-circle dot) that could have far-reaching consequences for interpreting the gravitational wave event GW190814 as a BH-BH merger.</abstract><cop>LES ULIS CEDEX A</cop><pub>Edp Sciences S A</pub><doi>10.1051/0004-6361/202039457</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2021-02, Vol.646, p.A55, Article 55
issn 0004-6361
1432-0746
language eng
recordid cdi_webofscience_primary_000617516100004CitationCount
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; EDP Sciences; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Astronomical models
Astronomy & Astrophysics
Binary stars
Black holes
Environment models
Equations of state
Gravitational waves
Hartree approximation
Neutron stars
Neutrons
Nuclear matter
Numerical relativity
Physical Sciences
Relativity
Science & Technology
Simulation
Stellar evolution
Supernovae
title Microscopic equation of state of hot nuclear matter for numerical relativity simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T18%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microscopic%20equation%20of%20state%20of%20hot%20nuclear%20matter%20for%20numerical%20relativity%20simulations&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Logoteta,%20Domenico&rft.date=2021-02-01&rft.volume=646&rft.spage=A55&rft.pages=A55-&rft.artnum=55&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202039457&rft_dat=%3Cproquest_webof%3E2494234945%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494234945&rft_id=info:pmid/&rfr_iscdi=true