Monitoring point optimization in lake waters

In order to grasp the distribution of water quality index in lake water, taking Jinghu Lake of Guangxi University as the experimental object, an radial basis function (RBF) neural network was combined with a genetic algorithm on the basis of an unmanned ship to study the optimal selection of monitor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science & technology. Water supply 2020-09, Vol.20 (6), p.2348-2358
Hauptverfasser: Liu, Gaoxuan, Ai, Jiaoyan, Xu, Jun, Zheng, Jianwu, Yao, Dongyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2358
container_issue 6
container_start_page 2348
container_title Water science & technology. Water supply
container_volume 20
creator Liu, Gaoxuan
Ai, Jiaoyan
Xu, Jun
Zheng, Jianwu
Yao, Dongyi
description In order to grasp the distribution of water quality index in lake water, taking Jinghu Lake of Guangxi University as the experimental object, an radial basis function (RBF) neural network was combined with a genetic algorithm on the basis of an unmanned ship to study the optimal selection of monitoring points. The single-objective and multi-objective optimization of water quality parameters were tested respectively and used to make the fitting distribution map. The results show that the genetic neural network has obvious advantages over the traditional isometric monitoring in the distribution error of water quality parameters, and the data reflected by the results are still accurate and effective at least six weeks after optimization. The results show that a genetic neural network can significantly improve the efficiency of water quality monitoring.
doi_str_mv 10.2166/ws.2020.147
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000617138500030CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481220170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-6351ea289297beddfd170e192ce5cbb2fb75c1f5d57ff5a9e7edfd9c1510d9d83</originalsourceid><addsrcrecordid>eNqNkDFPwzAUhC0EEqUw8QciMULKe04dxyOKKCAVscAcJY6NXFo72K4i-PWYFsHK9G747k7vCDlHmFEsy-sxzChQmOGcH5AJlsBz4KI63OkyF3wujslJCCsAyjnSCbl6dNZE5419zQZnbMzcEM3GfLbROJsZm63bN5WNbVQ-nJIj3a6DOvu5U_KyuH2u7_Pl091DfbPMJRVVzMuCoWppJajgnep73SMHhYJKxWTXUd1xJlGznnGtWSsUV4kREhlCL_qqmJKLfe7g3ftWhdis3NbbVNnQeYWUQgpM1OWekt6F4JVuBm82rf9oEJrvOZox8WmOJs2R6GpPj6pzOkijrFS_DgAokWNRsaQKqE3c_V-7rY1_Rf-xFl_HV3Nl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481220170</pqid></control><display><type>article</type><title>Monitoring point optimization in lake waters</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Liu, Gaoxuan ; Ai, Jiaoyan ; Xu, Jun ; Zheng, Jianwu ; Yao, Dongyi</creator><creatorcontrib>Liu, Gaoxuan ; Ai, Jiaoyan ; Xu, Jun ; Zheng, Jianwu ; Yao, Dongyi</creatorcontrib><description>In order to grasp the distribution of water quality index in lake water, taking Jinghu Lake of Guangxi University as the experimental object, an radial basis function (RBF) neural network was combined with a genetic algorithm on the basis of an unmanned ship to study the optimal selection of monitoring points. The single-objective and multi-objective optimization of water quality parameters were tested respectively and used to make the fitting distribution map. The results show that the genetic neural network has obvious advantages over the traditional isometric monitoring in the distribution error of water quality parameters, and the data reflected by the results are still accurate and effective at least six weeks after optimization. The results show that a genetic neural network can significantly improve the efficiency of water quality monitoring.</description><identifier>ISSN: 1606-9749</identifier><identifier>EISSN: 1607-0798</identifier><identifier>DOI: 10.2166/ws.2020.147</identifier><language>eng</language><publisher>LONDON: Iwa Publishing</publisher><subject>Chlorophyll ; Cluster analysis ; Distribution ; Engineering ; Engineering, Environmental ; Environmental monitoring ; Environmental Sciences ; Environmental Sciences &amp; Ecology ; Experiments ; Genetic algorithms ; Geography ; Isometric ; Lakes ; Life Sciences &amp; Biomedicine ; Mean square errors ; Monitoring systems ; Multiple objective analysis ; Neural networks ; Optimization ; Parameters ; Physical Sciences ; Radial basis function ; Science &amp; Technology ; Technology ; Unmanned vehicles ; Water monitoring ; Water quality ; Water quality management ; Water Resources ; Water temperature</subject><ispartof>Water science &amp; technology. Water supply, 2020-09, Vol.20 (6), p.2348-2358</ispartof><rights>Copyright IWA Publishing Sep 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000617138500030</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c298t-6351ea289297beddfd170e192ce5cbb2fb75c1f5d57ff5a9e7edfd9c1510d9d83</citedby><cites>FETCH-LOGICAL-c298t-6351ea289297beddfd170e192ce5cbb2fb75c1f5d57ff5a9e7edfd9c1510d9d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932,28255</link.rule.ids></links><search><creatorcontrib>Liu, Gaoxuan</creatorcontrib><creatorcontrib>Ai, Jiaoyan</creatorcontrib><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Zheng, Jianwu</creatorcontrib><creatorcontrib>Yao, Dongyi</creatorcontrib><title>Monitoring point optimization in lake waters</title><title>Water science &amp; technology. Water supply</title><addtitle>WATER SUPPLY</addtitle><description>In order to grasp the distribution of water quality index in lake water, taking Jinghu Lake of Guangxi University as the experimental object, an radial basis function (RBF) neural network was combined with a genetic algorithm on the basis of an unmanned ship to study the optimal selection of monitoring points. The single-objective and multi-objective optimization of water quality parameters were tested respectively and used to make the fitting distribution map. The results show that the genetic neural network has obvious advantages over the traditional isometric monitoring in the distribution error of water quality parameters, and the data reflected by the results are still accurate and effective at least six weeks after optimization. The results show that a genetic neural network can significantly improve the efficiency of water quality monitoring.</description><subject>Chlorophyll</subject><subject>Cluster analysis</subject><subject>Distribution</subject><subject>Engineering</subject><subject>Engineering, Environmental</subject><subject>Environmental monitoring</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>Experiments</subject><subject>Genetic algorithms</subject><subject>Geography</subject><subject>Isometric</subject><subject>Lakes</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Mean square errors</subject><subject>Monitoring systems</subject><subject>Multiple objective analysis</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Radial basis function</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>Unmanned vehicles</subject><subject>Water monitoring</subject><subject>Water quality</subject><subject>Water quality management</subject><subject>Water Resources</subject><subject>Water temperature</subject><issn>1606-9749</issn><issn>1607-0798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkDFPwzAUhC0EEqUw8QciMULKe04dxyOKKCAVscAcJY6NXFo72K4i-PWYFsHK9G747k7vCDlHmFEsy-sxzChQmOGcH5AJlsBz4KI63OkyF3wujslJCCsAyjnSCbl6dNZE5419zQZnbMzcEM3GfLbROJsZm63bN5WNbVQ-nJIj3a6DOvu5U_KyuH2u7_Pl091DfbPMJRVVzMuCoWppJajgnep73SMHhYJKxWTXUd1xJlGznnGtWSsUV4kREhlCL_qqmJKLfe7g3ftWhdis3NbbVNnQeYWUQgpM1OWekt6F4JVuBm82rf9oEJrvOZox8WmOJs2R6GpPj6pzOkijrFS_DgAokWNRsaQKqE3c_V-7rY1_Rf-xFl_HV3Nl</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Liu, Gaoxuan</creator><creator>Ai, Jiaoyan</creator><creator>Xu, Jun</creator><creator>Zheng, Jianwu</creator><creator>Yao, Dongyi</creator><general>Iwa Publishing</general><general>IWA Publishing</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20200901</creationdate><title>Monitoring point optimization in lake waters</title><author>Liu, Gaoxuan ; Ai, Jiaoyan ; Xu, Jun ; Zheng, Jianwu ; Yao, Dongyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-6351ea289297beddfd170e192ce5cbb2fb75c1f5d57ff5a9e7edfd9c1510d9d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chlorophyll</topic><topic>Cluster analysis</topic><topic>Distribution</topic><topic>Engineering</topic><topic>Engineering, Environmental</topic><topic>Environmental monitoring</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>Experiments</topic><topic>Genetic algorithms</topic><topic>Geography</topic><topic>Isometric</topic><topic>Lakes</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Mean square errors</topic><topic>Monitoring systems</topic><topic>Multiple objective analysis</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Radial basis function</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>Unmanned vehicles</topic><topic>Water monitoring</topic><topic>Water quality</topic><topic>Water quality management</topic><topic>Water Resources</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Gaoxuan</creatorcontrib><creatorcontrib>Ai, Jiaoyan</creatorcontrib><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Zheng, Jianwu</creatorcontrib><creatorcontrib>Yao, Dongyi</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Water science &amp; technology. Water supply</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Gaoxuan</au><au>Ai, Jiaoyan</au><au>Xu, Jun</au><au>Zheng, Jianwu</au><au>Yao, Dongyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring point optimization in lake waters</atitle><jtitle>Water science &amp; technology. Water supply</jtitle><stitle>WATER SUPPLY</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>20</volume><issue>6</issue><spage>2348</spage><epage>2358</epage><pages>2348-2358</pages><issn>1606-9749</issn><eissn>1607-0798</eissn><abstract>In order to grasp the distribution of water quality index in lake water, taking Jinghu Lake of Guangxi University as the experimental object, an radial basis function (RBF) neural network was combined with a genetic algorithm on the basis of an unmanned ship to study the optimal selection of monitoring points. The single-objective and multi-objective optimization of water quality parameters were tested respectively and used to make the fitting distribution map. The results show that the genetic neural network has obvious advantages over the traditional isometric monitoring in the distribution error of water quality parameters, and the data reflected by the results are still accurate and effective at least six weeks after optimization. The results show that a genetic neural network can significantly improve the efficiency of water quality monitoring.</abstract><cop>LONDON</cop><pub>Iwa Publishing</pub><doi>10.2166/ws.2020.147</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1606-9749
ispartof Water science & technology. Water supply, 2020-09, Vol.20 (6), p.2348-2358
issn 1606-9749
1607-0798
language eng
recordid cdi_webofscience_primary_000617138500030CitationCount
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Chlorophyll
Cluster analysis
Distribution
Engineering
Engineering, Environmental
Environmental monitoring
Environmental Sciences
Environmental Sciences & Ecology
Experiments
Genetic algorithms
Geography
Isometric
Lakes
Life Sciences & Biomedicine
Mean square errors
Monitoring systems
Multiple objective analysis
Neural networks
Optimization
Parameters
Physical Sciences
Radial basis function
Science & Technology
Technology
Unmanned vehicles
Water monitoring
Water quality
Water quality management
Water Resources
Water temperature
title Monitoring point optimization in lake waters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T23%3A32%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20point%20optimization%20in%20lake%20waters&rft.jtitle=Water%20science%20&%20technology.%20Water%20supply&rft.au=Liu,%20Gaoxuan&rft.date=2020-09-01&rft.volume=20&rft.issue=6&rft.spage=2348&rft.epage=2358&rft.pages=2348-2358&rft.issn=1606-9749&rft.eissn=1607-0798&rft_id=info:doi/10.2166/ws.2020.147&rft_dat=%3Cproquest_webof%3E2481220170%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481220170&rft_id=info:pmid/&rfr_iscdi=true