An Adaptive Learning Algorithm for Regularized Extreme Learning Machine
Extreme learning machine (ELM) has become popular in recent years, due to its robust approximation capacity and fast learning speed. It is common to add a \ell _{2} penalty term in basic ELM to avoid over-fitting. However, in \ell _{2} -regularized extreme learning machine ( \ell _{2} -RELM), cho...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.20736-20745 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20745 |
---|---|
container_issue | |
container_start_page | 20736 |
container_title | IEEE access |
container_volume | 9 |
creator | Zhang, Yuao Wu, Qingbiao Hu, Jueliang |
description | Extreme learning machine (ELM) has become popular in recent years, due to its robust approximation capacity and fast learning speed. It is common to add a \ell _{2} penalty term in basic ELM to avoid over-fitting. However, in \ell _{2} -regularized extreme learning machine ( \ell _{2} -RELM), choosing a suitable regularization factor is random and time consuming. In order to select a satisfactory regularization factor automatically, we proposed an adaptive regularized extreme learning machine (A-RELM) by replacing the regularization factor with a function. The function is defined in terms of the output weights named regularization function. And an iterative algorithm is proposed for obtaining the output weights, therefore, allowing for deriving their values simultaneously. Besides, the constructed regularization function ensures the convexity of the model, which contributes to a globally optimal solution. The convergence analysis of the iterative algorithm guarantees the effectiveness of the model training. Experimental results on some UCI benchmarks and the Yale face database B indicate the superiority of our proposed algorithm. |
doi_str_mv | 10.1109/ACCESS.2021.3054483 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000616290300001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9335603</ieee_id><doaj_id>oai_doaj_org_article_fafb18297010498186406bc0b517cc55</doaj_id><sourcerecordid>2487438850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e96f89aeac1f49ac22074ce148f5f717f9fb8bd536bf694f997d4fda8ecae2d33</originalsourceid><addsrcrecordid>eNqNkc1qGzEURofQQIKTJ8hmIMtiV_8jLYfBTQMOhThZC43mypaxR65GbtM8feROcLOMNhKX8326cIriBqMZxkh9q5tmvlzOCCJ4RhFnTNKz4pJgoaaUU_Hlw_uiuB6GDcpH5hGvLou7ui_rzuyT_w3lAkzsfb8q6-0qRJ_Wu9KFWD7C6rA10b9CV85fUoTdB_TB2LXv4ao4d2Y7wPX7PSmev8-fmh_Txc-7-6ZeTC1DMk1BCSeVAWOxY8pYQlDFLGAmHXcVrpxyrWy7vGrrhGJOqapjrjMSrAHSUTop7sfeLpiN3ke_M_GvDsbrf4MQV9rE5O0WtDOuxZKoCmHElMRSMCRai1qOK2s5z123Y9c-hl8HGJLehEPs8_qaMFkxKiVHmaIjZWMYhgju9CtG-ihAjwL0UYB-F5BTckz9gTa4wXroLZySWYDAgihEjy5w45NJPvRNOPQpR79-Pprpm5H2AP8pRSkXiNI3QlahYg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487438850</pqid></control><display><type>article</type><title>An Adaptive Learning Algorithm for Regularized Extreme Learning Machine</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Yuao ; Wu, Qingbiao ; Hu, Jueliang</creator><creatorcontrib>Zhang, Yuao ; Wu, Qingbiao ; Hu, Jueliang</creatorcontrib><description><![CDATA[Extreme learning machine (ELM) has become popular in recent years, due to its robust approximation capacity and fast learning speed. It is common to add a <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula> penalty term in basic ELM to avoid over-fitting. However, in <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-regularized extreme learning machine (<inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-RELM), choosing a suitable regularization factor is random and time consuming. In order to select a satisfactory regularization factor automatically, we proposed an adaptive regularized extreme learning machine (A-RELM) by replacing the regularization factor with a function. The function is defined in terms of the output weights named regularization function. And an iterative algorithm is proposed for obtaining the output weights, therefore, allowing for deriving their values simultaneously. Besides, the constructed regularization function ensures the convexity of the model, which contributes to a globally optimal solution. The convergence analysis of the iterative algorithm guarantees the effectiveness of the model training. Experimental results on some UCI benchmarks and the Yale face database B indicate the superiority of our proposed algorithm.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3054483</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Adaptation models ; Adaptive ; Adaptive algorithms ; Algorithms ; Approximation algorithms ; Artificial neural networks ; Computer Science ; Computer Science, Information Systems ; Convergence ; Convexity ; Engineering ; Engineering, Electrical & Electronic ; extreme learning machine (ELM) ; Extreme learning machines ; Iterative algorithms ; Iterative methods ; Machine learning ; Regularization ; Science & Technology ; Technology ; Telecommunications ; Training</subject><ispartof>IEEE access, 2021, Vol.9, p.20736-20745</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000616290300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c408t-e96f89aeac1f49ac22074ce148f5f717f9fb8bd536bf694f997d4fda8ecae2d33</citedby><cites>FETCH-LOGICAL-c408t-e96f89aeac1f49ac22074ce148f5f717f9fb8bd536bf694f997d4fda8ecae2d33</cites><orcidid>0000-0003-0763-536X ; 0000-0003-2706-6264 ; 0000-0002-8664-9788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9335603$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,2115,4025,27637,27927,27928,27929,39262,54937</link.rule.ids></links><search><creatorcontrib>Zhang, Yuao</creatorcontrib><creatorcontrib>Wu, Qingbiao</creatorcontrib><creatorcontrib>Hu, Jueliang</creatorcontrib><title>An Adaptive Learning Algorithm for Regularized Extreme Learning Machine</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE ACCESS</addtitle><description><![CDATA[Extreme learning machine (ELM) has become popular in recent years, due to its robust approximation capacity and fast learning speed. It is common to add a <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula> penalty term in basic ELM to avoid over-fitting. However, in <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-regularized extreme learning machine (<inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-RELM), choosing a suitable regularization factor is random and time consuming. In order to select a satisfactory regularization factor automatically, we proposed an adaptive regularized extreme learning machine (A-RELM) by replacing the regularization factor with a function. The function is defined in terms of the output weights named regularization function. And an iterative algorithm is proposed for obtaining the output weights, therefore, allowing for deriving their values simultaneously. Besides, the constructed regularization function ensures the convexity of the model, which contributes to a globally optimal solution. The convergence analysis of the iterative algorithm guarantees the effectiveness of the model training. Experimental results on some UCI benchmarks and the Yale face database B indicate the superiority of our proposed algorithm.]]></description><subject>Adaptation models</subject><subject>Adaptive</subject><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Convergence</subject><subject>Convexity</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>extreme learning machine (ELM)</subject><subject>Extreme learning machines</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Regularization</subject><subject>Science & Technology</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkc1qGzEURofQQIKTJ8hmIMtiV_8jLYfBTQMOhThZC43mypaxR65GbtM8feROcLOMNhKX8326cIriBqMZxkh9q5tmvlzOCCJ4RhFnTNKz4pJgoaaUU_Hlw_uiuB6GDcpH5hGvLou7ui_rzuyT_w3lAkzsfb8q6-0qRJ_Wu9KFWD7C6rA10b9CV85fUoTdB_TB2LXv4ao4d2Y7wPX7PSmev8-fmh_Txc-7-6ZeTC1DMk1BCSeVAWOxY8pYQlDFLGAmHXcVrpxyrWy7vGrrhGJOqapjrjMSrAHSUTop7sfeLpiN3ke_M_GvDsbrf4MQV9rE5O0WtDOuxZKoCmHElMRSMCRai1qOK2s5z123Y9c-hl8HGJLehEPs8_qaMFkxKiVHmaIjZWMYhgju9CtG-ihAjwL0UYB-F5BTckz9gTa4wXroLZySWYDAgihEjy5w45NJPvRNOPQpR79-Pprpm5H2AP8pRSkXiNI3QlahYg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhang, Yuao</creator><creator>Wu, Qingbiao</creator><creator>Hu, Jueliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0763-536X</orcidid><orcidid>https://orcid.org/0000-0003-2706-6264</orcidid><orcidid>https://orcid.org/0000-0002-8664-9788</orcidid></search><sort><creationdate>2021</creationdate><title>An Adaptive Learning Algorithm for Regularized Extreme Learning Machine</title><author>Zhang, Yuao ; Wu, Qingbiao ; Hu, Jueliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e96f89aeac1f49ac22074ce148f5f717f9fb8bd536bf694f997d4fda8ecae2d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>Adaptive</topic><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Convergence</topic><topic>Convexity</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>extreme learning machine (ELM)</topic><topic>Extreme learning machines</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Regularization</topic><topic>Science & Technology</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuao</creatorcontrib><creatorcontrib>Wu, Qingbiao</creatorcontrib><creatorcontrib>Hu, Jueliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuao</au><au>Wu, Qingbiao</au><au>Hu, Jueliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Learning Algorithm for Regularized Extreme Learning Machine</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><stitle>IEEE ACCESS</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>20736</spage><epage>20745</epage><pages>20736-20745</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Extreme learning machine (ELM) has become popular in recent years, due to its robust approximation capacity and fast learning speed. It is common to add a <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula> penalty term in basic ELM to avoid over-fitting. However, in <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-regularized extreme learning machine (<inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-RELM), choosing a suitable regularization factor is random and time consuming. In order to select a satisfactory regularization factor automatically, we proposed an adaptive regularized extreme learning machine (A-RELM) by replacing the regularization factor with a function. The function is defined in terms of the output weights named regularization function. And an iterative algorithm is proposed for obtaining the output weights, therefore, allowing for deriving their values simultaneously. Besides, the constructed regularization function ensures the convexity of the model, which contributes to a globally optimal solution. The convergence analysis of the iterative algorithm guarantees the effectiveness of the model training. Experimental results on some UCI benchmarks and the Yale face database B indicate the superiority of our proposed algorithm.]]></abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3054483</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0763-536X</orcidid><orcidid>https://orcid.org/0000-0003-2706-6264</orcidid><orcidid>https://orcid.org/0000-0002-8664-9788</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.20736-20745 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_webofscience_primary_000616290300001CitationCount |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals |
subjects | Adaptation models Adaptive Adaptive algorithms Algorithms Approximation algorithms Artificial neural networks Computer Science Computer Science, Information Systems Convergence Convexity Engineering Engineering, Electrical & Electronic extreme learning machine (ELM) Extreme learning machines Iterative algorithms Iterative methods Machine learning Regularization Science & Technology Technology Telecommunications Training |
title | An Adaptive Learning Algorithm for Regularized Extreme Learning Machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T15%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Learning%20Algorithm%20for%20Regularized%20Extreme%20Learning%20Machine&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Yuao&rft.date=2021&rft.volume=9&rft.spage=20736&rft.epage=20745&rft.pages=20736-20745&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3054483&rft_dat=%3Cproquest_webof%3E2487438850%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487438850&rft_id=info:pmid/&rft_ieee_id=9335603&rft_doaj_id=oai_doaj_org_article_fafb18297010498186406bc0b517cc55&rfr_iscdi=true |