An Adaptive Learning Algorithm for Regularized Extreme Learning Machine

Extreme learning machine (ELM) has become popular in recent years, due to its robust approximation capacity and fast learning speed. It is common to add a \ell _{2} penalty term in basic ELM to avoid over-fitting. However, in \ell _{2} -regularized extreme learning machine ( \ell _{2} -RELM), cho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.20736-20745
Hauptverfasser: Zhang, Yuao, Wu, Qingbiao, Hu, Jueliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20745
container_issue
container_start_page 20736
container_title IEEE access
container_volume 9
creator Zhang, Yuao
Wu, Qingbiao
Hu, Jueliang
description Extreme learning machine (ELM) has become popular in recent years, due to its robust approximation capacity and fast learning speed. It is common to add a \ell _{2} penalty term in basic ELM to avoid over-fitting. However, in \ell _{2} -regularized extreme learning machine ( \ell _{2} -RELM), choosing a suitable regularization factor is random and time consuming. In order to select a satisfactory regularization factor automatically, we proposed an adaptive regularized extreme learning machine (A-RELM) by replacing the regularization factor with a function. The function is defined in terms of the output weights named regularization function. And an iterative algorithm is proposed for obtaining the output weights, therefore, allowing for deriving their values simultaneously. Besides, the constructed regularization function ensures the convexity of the model, which contributes to a globally optimal solution. The convergence analysis of the iterative algorithm guarantees the effectiveness of the model training. Experimental results on some UCI benchmarks and the Yale face database B indicate the superiority of our proposed algorithm.
doi_str_mv 10.1109/ACCESS.2021.3054483
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000616290300001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9335603</ieee_id><doaj_id>oai_doaj_org_article_fafb18297010498186406bc0b517cc55</doaj_id><sourcerecordid>2487438850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e96f89aeac1f49ac22074ce148f5f717f9fb8bd536bf694f997d4fda8ecae2d33</originalsourceid><addsrcrecordid>eNqNkc1qGzEURofQQIKTJ8hmIMtiV_8jLYfBTQMOhThZC43mypaxR65GbtM8feROcLOMNhKX8326cIriBqMZxkh9q5tmvlzOCCJ4RhFnTNKz4pJgoaaUU_Hlw_uiuB6GDcpH5hGvLou7ui_rzuyT_w3lAkzsfb8q6-0qRJ_Wu9KFWD7C6rA10b9CV85fUoTdB_TB2LXv4ao4d2Y7wPX7PSmev8-fmh_Txc-7-6ZeTC1DMk1BCSeVAWOxY8pYQlDFLGAmHXcVrpxyrWy7vGrrhGJOqapjrjMSrAHSUTop7sfeLpiN3ke_M_GvDsbrf4MQV9rE5O0WtDOuxZKoCmHElMRSMCRai1qOK2s5z123Y9c-hl8HGJLehEPs8_qaMFkxKiVHmaIjZWMYhgju9CtG-ihAjwL0UYB-F5BTckz9gTa4wXroLZySWYDAgihEjy5w45NJPvRNOPQpR79-Pprpm5H2AP8pRSkXiNI3QlahYg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487438850</pqid></control><display><type>article</type><title>An Adaptive Learning Algorithm for Regularized Extreme Learning Machine</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Yuao ; Wu, Qingbiao ; Hu, Jueliang</creator><creatorcontrib>Zhang, Yuao ; Wu, Qingbiao ; Hu, Jueliang</creatorcontrib><description><![CDATA[Extreme learning machine (ELM) has become popular in recent years, due to its robust approximation capacity and fast learning speed. It is common to add a <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula> penalty term in basic ELM to avoid over-fitting. However, in <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-regularized extreme learning machine (<inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-RELM), choosing a suitable regularization factor is random and time consuming. In order to select a satisfactory regularization factor automatically, we proposed an adaptive regularized extreme learning machine (A-RELM) by replacing the regularization factor with a function. The function is defined in terms of the output weights named regularization function. And an iterative algorithm is proposed for obtaining the output weights, therefore, allowing for deriving their values simultaneously. Besides, the constructed regularization function ensures the convexity of the model, which contributes to a globally optimal solution. The convergence analysis of the iterative algorithm guarantees the effectiveness of the model training. Experimental results on some UCI benchmarks and the Yale face database B indicate the superiority of our proposed algorithm.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3054483</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Adaptation models ; Adaptive ; Adaptive algorithms ; Algorithms ; Approximation algorithms ; Artificial neural networks ; Computer Science ; Computer Science, Information Systems ; Convergence ; Convexity ; Engineering ; Engineering, Electrical &amp; Electronic ; extreme learning machine (ELM) ; Extreme learning machines ; Iterative algorithms ; Iterative methods ; Machine learning ; Regularization ; Science &amp; Technology ; Technology ; Telecommunications ; Training</subject><ispartof>IEEE access, 2021, Vol.9, p.20736-20745</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000616290300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c408t-e96f89aeac1f49ac22074ce148f5f717f9fb8bd536bf694f997d4fda8ecae2d33</citedby><cites>FETCH-LOGICAL-c408t-e96f89aeac1f49ac22074ce148f5f717f9fb8bd536bf694f997d4fda8ecae2d33</cites><orcidid>0000-0003-0763-536X ; 0000-0003-2706-6264 ; 0000-0002-8664-9788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9335603$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,2115,4025,27637,27927,27928,27929,39262,54937</link.rule.ids></links><search><creatorcontrib>Zhang, Yuao</creatorcontrib><creatorcontrib>Wu, Qingbiao</creatorcontrib><creatorcontrib>Hu, Jueliang</creatorcontrib><title>An Adaptive Learning Algorithm for Regularized Extreme Learning Machine</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE ACCESS</addtitle><description><![CDATA[Extreme learning machine (ELM) has become popular in recent years, due to its robust approximation capacity and fast learning speed. It is common to add a <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula> penalty term in basic ELM to avoid over-fitting. However, in <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-regularized extreme learning machine (<inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-RELM), choosing a suitable regularization factor is random and time consuming. In order to select a satisfactory regularization factor automatically, we proposed an adaptive regularized extreme learning machine (A-RELM) by replacing the regularization factor with a function. The function is defined in terms of the output weights named regularization function. And an iterative algorithm is proposed for obtaining the output weights, therefore, allowing for deriving their values simultaneously. Besides, the constructed regularization function ensures the convexity of the model, which contributes to a globally optimal solution. The convergence analysis of the iterative algorithm guarantees the effectiveness of the model training. Experimental results on some UCI benchmarks and the Yale face database B indicate the superiority of our proposed algorithm.]]></description><subject>Adaptation models</subject><subject>Adaptive</subject><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Convergence</subject><subject>Convexity</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>extreme learning machine (ELM)</subject><subject>Extreme learning machines</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Regularization</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkc1qGzEURofQQIKTJ8hmIMtiV_8jLYfBTQMOhThZC43mypaxR65GbtM8feROcLOMNhKX8326cIriBqMZxkh9q5tmvlzOCCJ4RhFnTNKz4pJgoaaUU_Hlw_uiuB6GDcpH5hGvLou7ui_rzuyT_w3lAkzsfb8q6-0qRJ_Wu9KFWD7C6rA10b9CV85fUoTdB_TB2LXv4ao4d2Y7wPX7PSmev8-fmh_Txc-7-6ZeTC1DMk1BCSeVAWOxY8pYQlDFLGAmHXcVrpxyrWy7vGrrhGJOqapjrjMSrAHSUTop7sfeLpiN3ke_M_GvDsbrf4MQV9rE5O0WtDOuxZKoCmHElMRSMCRai1qOK2s5z123Y9c-hl8HGJLehEPs8_qaMFkxKiVHmaIjZWMYhgju9CtG-ihAjwL0UYB-F5BTckz9gTa4wXroLZySWYDAgihEjy5w45NJPvRNOPQpR79-Pprpm5H2AP8pRSkXiNI3QlahYg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhang, Yuao</creator><creator>Wu, Qingbiao</creator><creator>Hu, Jueliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0763-536X</orcidid><orcidid>https://orcid.org/0000-0003-2706-6264</orcidid><orcidid>https://orcid.org/0000-0002-8664-9788</orcidid></search><sort><creationdate>2021</creationdate><title>An Adaptive Learning Algorithm for Regularized Extreme Learning Machine</title><author>Zhang, Yuao ; Wu, Qingbiao ; Hu, Jueliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e96f89aeac1f49ac22074ce148f5f717f9fb8bd536bf694f997d4fda8ecae2d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>Adaptive</topic><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Convergence</topic><topic>Convexity</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>extreme learning machine (ELM)</topic><topic>Extreme learning machines</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Regularization</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuao</creatorcontrib><creatorcontrib>Wu, Qingbiao</creatorcontrib><creatorcontrib>Hu, Jueliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuao</au><au>Wu, Qingbiao</au><au>Hu, Jueliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Learning Algorithm for Regularized Extreme Learning Machine</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><stitle>IEEE ACCESS</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>20736</spage><epage>20745</epage><pages>20736-20745</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Extreme learning machine (ELM) has become popular in recent years, due to its robust approximation capacity and fast learning speed. It is common to add a <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula> penalty term in basic ELM to avoid over-fitting. However, in <inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-regularized extreme learning machine (<inline-formula> <tex-math notation="LaTeX">\ell _{2} </tex-math></inline-formula>-RELM), choosing a suitable regularization factor is random and time consuming. In order to select a satisfactory regularization factor automatically, we proposed an adaptive regularized extreme learning machine (A-RELM) by replacing the regularization factor with a function. The function is defined in terms of the output weights named regularization function. And an iterative algorithm is proposed for obtaining the output weights, therefore, allowing for deriving their values simultaneously. Besides, the constructed regularization function ensures the convexity of the model, which contributes to a globally optimal solution. The convergence analysis of the iterative algorithm guarantees the effectiveness of the model training. Experimental results on some UCI benchmarks and the Yale face database B indicate the superiority of our proposed algorithm.]]></abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3054483</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0763-536X</orcidid><orcidid>https://orcid.org/0000-0003-2706-6264</orcidid><orcidid>https://orcid.org/0000-0002-8664-9788</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.20736-20745
issn 2169-3536
2169-3536
language eng
recordid cdi_webofscience_primary_000616290300001CitationCount
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals
subjects Adaptation models
Adaptive
Adaptive algorithms
Algorithms
Approximation algorithms
Artificial neural networks
Computer Science
Computer Science, Information Systems
Convergence
Convexity
Engineering
Engineering, Electrical & Electronic
extreme learning machine (ELM)
Extreme learning machines
Iterative algorithms
Iterative methods
Machine learning
Regularization
Science & Technology
Technology
Telecommunications
Training
title An Adaptive Learning Algorithm for Regularized Extreme Learning Machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T15%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Learning%20Algorithm%20for%20Regularized%20Extreme%20Learning%20Machine&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Yuao&rft.date=2021&rft.volume=9&rft.spage=20736&rft.epage=20745&rft.pages=20736-20745&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3054483&rft_dat=%3Cproquest_webof%3E2487438850%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487438850&rft_id=info:pmid/&rft_ieee_id=9335603&rft_doaj_id=oai_doaj_org_article_fafb18297010498186406bc0b517cc55&rfr_iscdi=true