Infinitely many solutions of Dirac equations with concave and convex nonlinearities
We consider non-periodic Dirac equations with nonlinearities which involve a combination of concave and convex terms. Using variational methods, we prove the existence of infinitely many large and small energy solutions. For small energy solutions, we establish a new critical point theorem which gen...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2021-02, Vol.72 (1), Article 39 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider non-periodic Dirac equations with nonlinearities which involve a combination of concave and convex terms. Using variational methods, we prove the existence of infinitely many large and small energy solutions. For small energy solutions, we establish a new critical point theorem which generalize the dual Fountain Theorem of Bartsch and Willen, by using the index theory and the
P
-topology. Some non-periodic conditions on the whole space
R
3
are given in order to overcome the lack of compactness. |
---|---|
ISSN: | 0044-2275 1420-9039 |
DOI: | 10.1007/s00033-021-01472-3 |