Infinitely many solutions of Dirac equations with concave and convex nonlinearities

We consider non-periodic Dirac equations with nonlinearities which involve a combination of concave and convex terms. Using variational methods, we prove the existence of infinitely many large and small energy solutions. For small energy solutions, we establish a new critical point theorem which gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2021-02, Vol.72 (1), Article 39
Hauptverfasser: Ding, Yanheng, Dong, Xiaojing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider non-periodic Dirac equations with nonlinearities which involve a combination of concave and convex terms. Using variational methods, we prove the existence of infinitely many large and small energy solutions. For small energy solutions, we establish a new critical point theorem which generalize the dual Fountain Theorem of Bartsch and Willen, by using the index theory and the P -topology. Some non-periodic conditions on the whole space R 3 are given in order to overcome the lack of compactness.
ISSN:0044-2275
1420-9039
DOI:10.1007/s00033-021-01472-3