Non‐Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints
Faster, cheaper, sensitive, and mechanisms‐based animal alternatives are needed to address the safety assessment needs of the growing number of nanomaterials (NM) and their sophisticated property variants. Specifically, strategies that help identify and prioritize alternative schemes involving indiv...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-04, Vol.17 (15), p.e2007628-n/a, Article 2007628 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 15 |
container_start_page | e2007628 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 17 |
creator | Halappanavar, Sabina Nymark, Penny Krug, Harald F. Clift, Martin J. D. Rothen‐Rutishauser, Barbara Vogel, Ulla |
description | Faster, cheaper, sensitive, and mechanisms‐based animal alternatives are needed to address the safety assessment needs of the growing number of nanomaterials (NM) and their sophisticated property variants. Specifically, strategies that help identify and prioritize alternative schemes involving individual test models, toxicity endpoints, and assays for the assessment of adverse outcomes, as well as strategies that enable validation and refinement of these schemes for the regulatory acceptance are needed. In this review, two strategies 1) the current nanotoxicology literature review and 2) the adverse outcome pathways (AOPs) framework, a systematic process that allows the assembly of available mechanistic information concerning a toxicological response in a simple modular format, are presented. The review highlights 1) the most frequently assessed and reported ad hoc in vivo and in vitro toxicity measurements in the literature, 2) various AOPs of relevance to inhalation toxicity of NM that are presently under development, and 3) their applicability in identifying key events of toxicity for targeted in vitro assay development. Finally, using an existing AOP for lung fibrosis, the specific combinations of cell types, exposure and test systems, and assays that are experimentally supported and thus, can be used for assessing NM‐induced lung fibrosis, are proposed.
AOPs enable the systematic organisation of the existing in silico, in vivo and in vitro toxicology data (specific to NM or non‐NM data) and serve as mechanistic backbones for the establishment of potential animal reduction or replacement strategies and toxicity testing tools. Together with the information on material characterisation and exposure, they enable derivation of risk indicators. |
doi_str_mv | 10.1002/smll.202007628 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000616075600001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512625716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5548-e461c601e068aceae6f7e69c61a8bf14f93e7f1fbefab9022ef202fbf8d88a773</originalsourceid><addsrcrecordid>eNqNkU9v0zAYxiMEYmNw5YgscUQpthM7DreqGn-kbkN0nC3Hec08UruLHUpvnDjzGfkkOGqXnhCc_Nr-PY_9vk-WPSd4RjCmr8O662YUU4wrTsWD7JRwUuRc0PrhVBN8kj0J4RbjgtCyepydFAVjdcGL0-znpXe_f_yaO7tWHVrFXkX4YiEg43t07b9bbeMOzUOAENbgIvIGXSrng1YdoItE91Z14Q365NM-Xc7bb9AHQFdD1H4N6KOKN1u1C8g6FG8AraADHa13I3zu2o23Loan2SOTbODZYT3LPr89v168z5dX7z4s5stcM1aKHEpONMcEMBdKgwJuKuC15kSJxpDS1AVUhpgGjGpqTCmYNBvTGNEKoaqqOMvyvW_YwmZo5KZPffc76ZWVh6OvqQJZ8rLkI1__ld_0vj2K7oWkZKJmjImkfbnXJvBugBDlrR96l9qTlBHKKasIT9RsT-neh9CDmd4gWI4RyzFiOUWcBC8OtkOzhnbC7zNNwKs9sIXGm6AtOA0ThjHmhOOK8VRhkmjx__TCRjVmt_CDi8fhbG0Hu3_8W64ulstjF38A4J7Ymw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512625716</pqid></control><display><type>article</type><title>Non‐Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints</title><source>SWEPUB Freely available online</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Halappanavar, Sabina ; Nymark, Penny ; Krug, Harald F. ; Clift, Martin J. D. ; Rothen‐Rutishauser, Barbara ; Vogel, Ulla</creator><creatorcontrib>Halappanavar, Sabina ; Nymark, Penny ; Krug, Harald F. ; Clift, Martin J. D. ; Rothen‐Rutishauser, Barbara ; Vogel, Ulla</creatorcontrib><description>Faster, cheaper, sensitive, and mechanisms‐based animal alternatives are needed to address the safety assessment needs of the growing number of nanomaterials (NM) and their sophisticated property variants. Specifically, strategies that help identify and prioritize alternative schemes involving individual test models, toxicity endpoints, and assays for the assessment of adverse outcomes, as well as strategies that enable validation and refinement of these schemes for the regulatory acceptance are needed. In this review, two strategies 1) the current nanotoxicology literature review and 2) the adverse outcome pathways (AOPs) framework, a systematic process that allows the assembly of available mechanistic information concerning a toxicological response in a simple modular format, are presented. The review highlights 1) the most frequently assessed and reported ad hoc in vivo and in vitro toxicity measurements in the literature, 2) various AOPs of relevance to inhalation toxicity of NM that are presently under development, and 3) their applicability in identifying key events of toxicity for targeted in vitro assay development. Finally, using an existing AOP for lung fibrosis, the specific combinations of cell types, exposure and test systems, and assays that are experimentally supported and thus, can be used for assessing NM‐induced lung fibrosis, are proposed.
AOPs enable the systematic organisation of the existing in silico, in vivo and in vitro toxicology data (specific to NM or non‐NM data) and serve as mechanistic backbones for the establishment of potential animal reduction or replacement strategies and toxicity testing tools. Together with the information on material characterisation and exposure, they enable derivation of risk indicators.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202007628</identifier><identifier>PMID: 33559363</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Assaying ; Biocompatibility ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Fibrosis ; in vitro toxicity ; In vivo methods and tests ; Literature reviews ; lung fibrosis ; Lungs ; Materials Science ; Materials Science, Multidisciplinary ; Medicin och hälsovetenskap ; Nanomaterials ; nanoparticles ; Nanoscience & Nanotechnology ; Nanotechnology ; nanotoxicity ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Respiration ; risk assessment ; Science & Technology ; Science & Technology - Other Topics ; Technology ; Toxicity testing</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-04, Vol.17 (15), p.e2007628-n/a, Article 2007628</ispartof><rights>2021 Her Majesty the Queen in Right of Canada. Small published by Wiley‐VCH GmbH. Reproduced with the permission of the Minister of Health Canada</rights><rights>2021 Her Majesty the Queen in Right of Canada. Small published by Wiley-VCH GmbH. Reproduced with the permission of the Minister of Health Canada.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>36</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000616075600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c5548-e461c601e068aceae6f7e69c61a8bf14f93e7f1fbefab9022ef202fbf8d88a773</citedby><cites>FETCH-LOGICAL-c5548-e461c601e068aceae6f7e69c61a8bf14f93e7f1fbefab9022ef202fbf8d88a773</cites><orcidid>0000-0001-6807-1524 ; 0000-0002-3435-7775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202007628$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202007628$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,554,782,786,887,1419,27933,27934,39267,45583,45584</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33559363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:145895558$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Halappanavar, Sabina</creatorcontrib><creatorcontrib>Nymark, Penny</creatorcontrib><creatorcontrib>Krug, Harald F.</creatorcontrib><creatorcontrib>Clift, Martin J. D.</creatorcontrib><creatorcontrib>Rothen‐Rutishauser, Barbara</creatorcontrib><creatorcontrib>Vogel, Ulla</creatorcontrib><title>Non‐Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>SMALL</addtitle><addtitle>Small</addtitle><description>Faster, cheaper, sensitive, and mechanisms‐based animal alternatives are needed to address the safety assessment needs of the growing number of nanomaterials (NM) and their sophisticated property variants. Specifically, strategies that help identify and prioritize alternative schemes involving individual test models, toxicity endpoints, and assays for the assessment of adverse outcomes, as well as strategies that enable validation and refinement of these schemes for the regulatory acceptance are needed. In this review, two strategies 1) the current nanotoxicology literature review and 2) the adverse outcome pathways (AOPs) framework, a systematic process that allows the assembly of available mechanistic information concerning a toxicological response in a simple modular format, are presented. The review highlights 1) the most frequently assessed and reported ad hoc in vivo and in vitro toxicity measurements in the literature, 2) various AOPs of relevance to inhalation toxicity of NM that are presently under development, and 3) their applicability in identifying key events of toxicity for targeted in vitro assay development. Finally, using an existing AOP for lung fibrosis, the specific combinations of cell types, exposure and test systems, and assays that are experimentally supported and thus, can be used for assessing NM‐induced lung fibrosis, are proposed.
AOPs enable the systematic organisation of the existing in silico, in vivo and in vitro toxicology data (specific to NM or non‐NM data) and serve as mechanistic backbones for the establishment of potential animal reduction or replacement strategies and toxicity testing tools. Together with the information on material characterisation and exposure, they enable derivation of risk indicators.</description><subject>Assaying</subject><subject>Biocompatibility</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Fibrosis</subject><subject>in vitro toxicity</subject><subject>In vivo methods and tests</subject><subject>Literature reviews</subject><subject>lung fibrosis</subject><subject>Lungs</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Medicin och hälsovetenskap</subject><subject>Nanomaterials</subject><subject>nanoparticles</subject><subject>Nanoscience & Nanotechnology</subject><subject>Nanotechnology</subject><subject>nanotoxicity</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Respiration</subject><subject>risk assessment</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Technology</subject><subject>Toxicity testing</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>HGBXW</sourceid><sourceid>D8T</sourceid><recordid>eNqNkU9v0zAYxiMEYmNw5YgscUQpthM7DreqGn-kbkN0nC3Hec08UruLHUpvnDjzGfkkOGqXnhCc_Nr-PY_9vk-WPSd4RjCmr8O662YUU4wrTsWD7JRwUuRc0PrhVBN8kj0J4RbjgtCyepydFAVjdcGL0-znpXe_f_yaO7tWHVrFXkX4YiEg43t07b9bbeMOzUOAENbgIvIGXSrng1YdoItE91Z14Q365NM-Xc7bb9AHQFdD1H4N6KOKN1u1C8g6FG8AraADHa13I3zu2o23Loan2SOTbODZYT3LPr89v168z5dX7z4s5stcM1aKHEpONMcEMBdKgwJuKuC15kSJxpDS1AVUhpgGjGpqTCmYNBvTGNEKoaqqOMvyvW_YwmZo5KZPffc76ZWVh6OvqQJZ8rLkI1__ld_0vj2K7oWkZKJmjImkfbnXJvBugBDlrR96l9qTlBHKKasIT9RsT-neh9CDmd4gWI4RyzFiOUWcBC8OtkOzhnbC7zNNwKs9sIXGm6AtOA0ThjHmhOOK8VRhkmjx__TCRjVmt_CDi8fhbG0Hu3_8W64ulstjF38A4J7Ymw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Halappanavar, Sabina</creator><creator>Nymark, Penny</creator><creator>Krug, Harald F.</creator><creator>Clift, Martin J. D.</creator><creator>Rothen‐Rutishauser, Barbara</creator><creator>Vogel, Ulla</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-6807-1524</orcidid><orcidid>https://orcid.org/0000-0002-3435-7775</orcidid></search><sort><creationdate>20210401</creationdate><title>Non‐Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints</title><author>Halappanavar, Sabina ; Nymark, Penny ; Krug, Harald F. ; Clift, Martin J. D. ; Rothen‐Rutishauser, Barbara ; Vogel, Ulla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5548-e461c601e068aceae6f7e69c61a8bf14f93e7f1fbefab9022ef202fbf8d88a773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Assaying</topic><topic>Biocompatibility</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Fibrosis</topic><topic>in vitro toxicity</topic><topic>In vivo methods and tests</topic><topic>Literature reviews</topic><topic>lung fibrosis</topic><topic>Lungs</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Medicin och hälsovetenskap</topic><topic>Nanomaterials</topic><topic>nanoparticles</topic><topic>Nanoscience & Nanotechnology</topic><topic>Nanotechnology</topic><topic>nanotoxicity</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Respiration</topic><topic>risk assessment</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Technology</topic><topic>Toxicity testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halappanavar, Sabina</creatorcontrib><creatorcontrib>Nymark, Penny</creatorcontrib><creatorcontrib>Krug, Harald F.</creatorcontrib><creatorcontrib>Clift, Martin J. D.</creatorcontrib><creatorcontrib>Rothen‐Rutishauser, Barbara</creatorcontrib><creatorcontrib>Vogel, Ulla</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halappanavar, Sabina</au><au>Nymark, Penny</au><au>Krug, Harald F.</au><au>Clift, Martin J. D.</au><au>Rothen‐Rutishauser, Barbara</au><au>Vogel, Ulla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><stitle>SMALL</stitle><addtitle>Small</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>17</volume><issue>15</issue><spage>e2007628</spage><epage>n/a</epage><pages>e2007628-n/a</pages><artnum>2007628</artnum><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Faster, cheaper, sensitive, and mechanisms‐based animal alternatives are needed to address the safety assessment needs of the growing number of nanomaterials (NM) and their sophisticated property variants. Specifically, strategies that help identify and prioritize alternative schemes involving individual test models, toxicity endpoints, and assays for the assessment of adverse outcomes, as well as strategies that enable validation and refinement of these schemes for the regulatory acceptance are needed. In this review, two strategies 1) the current nanotoxicology literature review and 2) the adverse outcome pathways (AOPs) framework, a systematic process that allows the assembly of available mechanistic information concerning a toxicological response in a simple modular format, are presented. The review highlights 1) the most frequently assessed and reported ad hoc in vivo and in vitro toxicity measurements in the literature, 2) various AOPs of relevance to inhalation toxicity of NM that are presently under development, and 3) their applicability in identifying key events of toxicity for targeted in vitro assay development. Finally, using an existing AOP for lung fibrosis, the specific combinations of cell types, exposure and test systems, and assays that are experimentally supported and thus, can be used for assessing NM‐induced lung fibrosis, are proposed.
AOPs enable the systematic organisation of the existing in silico, in vivo and in vitro toxicology data (specific to NM or non‐NM data) and serve as mechanistic backbones for the establishment of potential animal reduction or replacement strategies and toxicity testing tools. Together with the information on material characterisation and exposure, they enable derivation of risk indicators.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>33559363</pmid><doi>10.1002/smll.202007628</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-6807-1524</orcidid><orcidid>https://orcid.org/0000-0002-3435-7775</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2021-04, Vol.17 (15), p.e2007628-n/a, Article 2007628 |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_webofscience_primary_000616075600001 |
source | SWEPUB Freely available online; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Assaying Biocompatibility Chemistry Chemistry, Multidisciplinary Chemistry, Physical Fibrosis in vitro toxicity In vivo methods and tests Literature reviews lung fibrosis Lungs Materials Science Materials Science, Multidisciplinary Medicin och hälsovetenskap Nanomaterials nanoparticles Nanoscience & Nanotechnology Nanotechnology nanotoxicity Physical Sciences Physics Physics, Applied Physics, Condensed Matter Respiration risk assessment Science & Technology Science & Technology - Other Topics Technology Toxicity testing |
title | Non‐Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T17%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90Animal%20Strategies%20for%20Toxicity%20Assessment%20of%20Nanoscale%20Materials:%20Role%20of%20Adverse%20Outcome%20Pathways%20in%20the%20Selection%20of%20Endpoints&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Halappanavar,%20Sabina&rft.date=2021-04-01&rft.volume=17&rft.issue=15&rft.spage=e2007628&rft.epage=n/a&rft.pages=e2007628-n/a&rft.artnum=2007628&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202007628&rft_dat=%3Cproquest_webof%3E2512625716%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512625716&rft_id=info:pmid/33559363&rfr_iscdi=true |