Non‐Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints

Faster, cheaper, sensitive, and mechanisms‐based animal alternatives are needed to address the safety assessment needs of the growing number of nanomaterials (NM) and their sophisticated property variants. Specifically, strategies that help identify and prioritize alternative schemes involving indiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-04, Vol.17 (15), p.e2007628-n/a, Article 2007628
Hauptverfasser: Halappanavar, Sabina, Nymark, Penny, Krug, Harald F., Clift, Martin J. D., Rothen‐Rutishauser, Barbara, Vogel, Ulla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 15
container_start_page e2007628
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 17
creator Halappanavar, Sabina
Nymark, Penny
Krug, Harald F.
Clift, Martin J. D.
Rothen‐Rutishauser, Barbara
Vogel, Ulla
description Faster, cheaper, sensitive, and mechanisms‐based animal alternatives are needed to address the safety assessment needs of the growing number of nanomaterials (NM) and their sophisticated property variants. Specifically, strategies that help identify and prioritize alternative schemes involving individual test models, toxicity endpoints, and assays for the assessment of adverse outcomes, as well as strategies that enable validation and refinement of these schemes for the regulatory acceptance are needed. In this review, two strategies 1) the current nanotoxicology literature review and 2) the adverse outcome pathways (AOPs) framework, a systematic process that allows the assembly of available mechanistic information concerning a toxicological response in a simple modular format, are presented. The review highlights 1) the most frequently assessed and reported ad hoc in vivo and in vitro toxicity measurements in the literature, 2) various AOPs of relevance to inhalation toxicity of NM that are presently under development, and 3) their applicability in identifying key events of toxicity for targeted in vitro assay development. Finally, using an existing AOP for lung fibrosis, the specific combinations of cell types, exposure and test systems, and assays that are experimentally supported and thus, can be used for assessing NM‐induced lung fibrosis, are proposed. AOPs enable the systematic organisation of the existing in silico, in vivo and in vitro toxicology data (specific to NM or non‐NM data) and serve as mechanistic backbones for the establishment of potential animal reduction or replacement strategies and toxicity testing tools. Together with the information on material characterisation and exposure, they enable derivation of risk indicators.
doi_str_mv 10.1002/smll.202007628
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000616075600001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512625716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5548-e461c601e068aceae6f7e69c61a8bf14f93e7f1fbefab9022ef202fbf8d88a773</originalsourceid><addsrcrecordid>eNqNkU9v0zAYxiMEYmNw5YgscUQpthM7DreqGn-kbkN0nC3Hec08UruLHUpvnDjzGfkkOGqXnhCc_Nr-PY_9vk-WPSd4RjCmr8O662YUU4wrTsWD7JRwUuRc0PrhVBN8kj0J4RbjgtCyepydFAVjdcGL0-znpXe_f_yaO7tWHVrFXkX4YiEg43t07b9bbeMOzUOAENbgIvIGXSrng1YdoItE91Z14Q365NM-Xc7bb9AHQFdD1H4N6KOKN1u1C8g6FG8AraADHa13I3zu2o23Loan2SOTbODZYT3LPr89v168z5dX7z4s5stcM1aKHEpONMcEMBdKgwJuKuC15kSJxpDS1AVUhpgGjGpqTCmYNBvTGNEKoaqqOMvyvW_YwmZo5KZPffc76ZWVh6OvqQJZ8rLkI1__ld_0vj2K7oWkZKJmjImkfbnXJvBugBDlrR96l9qTlBHKKasIT9RsT-neh9CDmd4gWI4RyzFiOUWcBC8OtkOzhnbC7zNNwKs9sIXGm6AtOA0ThjHmhOOK8VRhkmjx__TCRjVmt_CDi8fhbG0Hu3_8W64ulstjF38A4J7Ymw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512625716</pqid></control><display><type>article</type><title>Non‐Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints</title><source>SWEPUB Freely available online</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Halappanavar, Sabina ; Nymark, Penny ; Krug, Harald F. ; Clift, Martin J. D. ; Rothen‐Rutishauser, Barbara ; Vogel, Ulla</creator><creatorcontrib>Halappanavar, Sabina ; Nymark, Penny ; Krug, Harald F. ; Clift, Martin J. D. ; Rothen‐Rutishauser, Barbara ; Vogel, Ulla</creatorcontrib><description>Faster, cheaper, sensitive, and mechanisms‐based animal alternatives are needed to address the safety assessment needs of the growing number of nanomaterials (NM) and their sophisticated property variants. Specifically, strategies that help identify and prioritize alternative schemes involving individual test models, toxicity endpoints, and assays for the assessment of adverse outcomes, as well as strategies that enable validation and refinement of these schemes for the regulatory acceptance are needed. In this review, two strategies 1) the current nanotoxicology literature review and 2) the adverse outcome pathways (AOPs) framework, a systematic process that allows the assembly of available mechanistic information concerning a toxicological response in a simple modular format, are presented. The review highlights 1) the most frequently assessed and reported ad hoc in vivo and in vitro toxicity measurements in the literature, 2) various AOPs of relevance to inhalation toxicity of NM that are presently under development, and 3) their applicability in identifying key events of toxicity for targeted in vitro assay development. Finally, using an existing AOP for lung fibrosis, the specific combinations of cell types, exposure and test systems, and assays that are experimentally supported and thus, can be used for assessing NM‐induced lung fibrosis, are proposed. AOPs enable the systematic organisation of the existing in silico, in vivo and in vitro toxicology data (specific to NM or non‐NM data) and serve as mechanistic backbones for the establishment of potential animal reduction or replacement strategies and toxicity testing tools. Together with the information on material characterisation and exposure, they enable derivation of risk indicators.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202007628</identifier><identifier>PMID: 33559363</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Assaying ; Biocompatibility ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Fibrosis ; in vitro toxicity ; In vivo methods and tests ; Literature reviews ; lung fibrosis ; Lungs ; Materials Science ; Materials Science, Multidisciplinary ; Medicin och hälsovetenskap ; Nanomaterials ; nanoparticles ; Nanoscience &amp; Nanotechnology ; Nanotechnology ; nanotoxicity ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Respiration ; risk assessment ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology ; Toxicity testing</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-04, Vol.17 (15), p.e2007628-n/a, Article 2007628</ispartof><rights>2021 Her Majesty the Queen in Right of Canada. Small published by Wiley‐VCH GmbH. Reproduced with the permission of the Minister of Health Canada</rights><rights>2021 Her Majesty the Queen in Right of Canada. Small published by Wiley-VCH GmbH. Reproduced with the permission of the Minister of Health Canada.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>36</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000616075600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c5548-e461c601e068aceae6f7e69c61a8bf14f93e7f1fbefab9022ef202fbf8d88a773</citedby><cites>FETCH-LOGICAL-c5548-e461c601e068aceae6f7e69c61a8bf14f93e7f1fbefab9022ef202fbf8d88a773</cites><orcidid>0000-0001-6807-1524 ; 0000-0002-3435-7775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202007628$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202007628$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,554,782,786,887,1419,27933,27934,39267,45583,45584</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33559363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:145895558$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Halappanavar, Sabina</creatorcontrib><creatorcontrib>Nymark, Penny</creatorcontrib><creatorcontrib>Krug, Harald F.</creatorcontrib><creatorcontrib>Clift, Martin J. D.</creatorcontrib><creatorcontrib>Rothen‐Rutishauser, Barbara</creatorcontrib><creatorcontrib>Vogel, Ulla</creatorcontrib><title>Non‐Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>SMALL</addtitle><addtitle>Small</addtitle><description>Faster, cheaper, sensitive, and mechanisms‐based animal alternatives are needed to address the safety assessment needs of the growing number of nanomaterials (NM) and their sophisticated property variants. Specifically, strategies that help identify and prioritize alternative schemes involving individual test models, toxicity endpoints, and assays for the assessment of adverse outcomes, as well as strategies that enable validation and refinement of these schemes for the regulatory acceptance are needed. In this review, two strategies 1) the current nanotoxicology literature review and 2) the adverse outcome pathways (AOPs) framework, a systematic process that allows the assembly of available mechanistic information concerning a toxicological response in a simple modular format, are presented. The review highlights 1) the most frequently assessed and reported ad hoc in vivo and in vitro toxicity measurements in the literature, 2) various AOPs of relevance to inhalation toxicity of NM that are presently under development, and 3) their applicability in identifying key events of toxicity for targeted in vitro assay development. Finally, using an existing AOP for lung fibrosis, the specific combinations of cell types, exposure and test systems, and assays that are experimentally supported and thus, can be used for assessing NM‐induced lung fibrosis, are proposed. AOPs enable the systematic organisation of the existing in silico, in vivo and in vitro toxicology data (specific to NM or non‐NM data) and serve as mechanistic backbones for the establishment of potential animal reduction or replacement strategies and toxicity testing tools. Together with the information on material characterisation and exposure, they enable derivation of risk indicators.</description><subject>Assaying</subject><subject>Biocompatibility</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Fibrosis</subject><subject>in vitro toxicity</subject><subject>In vivo methods and tests</subject><subject>Literature reviews</subject><subject>lung fibrosis</subject><subject>Lungs</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Medicin och hälsovetenskap</subject><subject>Nanomaterials</subject><subject>nanoparticles</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Nanotechnology</subject><subject>nanotoxicity</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Respiration</subject><subject>risk assessment</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><subject>Toxicity testing</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>HGBXW</sourceid><sourceid>D8T</sourceid><recordid>eNqNkU9v0zAYxiMEYmNw5YgscUQpthM7DreqGn-kbkN0nC3Hec08UruLHUpvnDjzGfkkOGqXnhCc_Nr-PY_9vk-WPSd4RjCmr8O662YUU4wrTsWD7JRwUuRc0PrhVBN8kj0J4RbjgtCyepydFAVjdcGL0-znpXe_f_yaO7tWHVrFXkX4YiEg43t07b9bbeMOzUOAENbgIvIGXSrng1YdoItE91Z14Q365NM-Xc7bb9AHQFdD1H4N6KOKN1u1C8g6FG8AraADHa13I3zu2o23Loan2SOTbODZYT3LPr89v168z5dX7z4s5stcM1aKHEpONMcEMBdKgwJuKuC15kSJxpDS1AVUhpgGjGpqTCmYNBvTGNEKoaqqOMvyvW_YwmZo5KZPffc76ZWVh6OvqQJZ8rLkI1__ld_0vj2K7oWkZKJmjImkfbnXJvBugBDlrR96l9qTlBHKKasIT9RsT-neh9CDmd4gWI4RyzFiOUWcBC8OtkOzhnbC7zNNwKs9sIXGm6AtOA0ThjHmhOOK8VRhkmjx__TCRjVmt_CDi8fhbG0Hu3_8W64ulstjF38A4J7Ymw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Halappanavar, Sabina</creator><creator>Nymark, Penny</creator><creator>Krug, Harald F.</creator><creator>Clift, Martin J. D.</creator><creator>Rothen‐Rutishauser, Barbara</creator><creator>Vogel, Ulla</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-6807-1524</orcidid><orcidid>https://orcid.org/0000-0002-3435-7775</orcidid></search><sort><creationdate>20210401</creationdate><title>Non‐Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints</title><author>Halappanavar, Sabina ; Nymark, Penny ; Krug, Harald F. ; Clift, Martin J. D. ; Rothen‐Rutishauser, Barbara ; Vogel, Ulla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5548-e461c601e068aceae6f7e69c61a8bf14f93e7f1fbefab9022ef202fbf8d88a773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Assaying</topic><topic>Biocompatibility</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Fibrosis</topic><topic>in vitro toxicity</topic><topic>In vivo methods and tests</topic><topic>Literature reviews</topic><topic>lung fibrosis</topic><topic>Lungs</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Medicin och hälsovetenskap</topic><topic>Nanomaterials</topic><topic>nanoparticles</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Nanotechnology</topic><topic>nanotoxicity</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Respiration</topic><topic>risk assessment</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><topic>Toxicity testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halappanavar, Sabina</creatorcontrib><creatorcontrib>Nymark, Penny</creatorcontrib><creatorcontrib>Krug, Harald F.</creatorcontrib><creatorcontrib>Clift, Martin J. D.</creatorcontrib><creatorcontrib>Rothen‐Rutishauser, Barbara</creatorcontrib><creatorcontrib>Vogel, Ulla</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halappanavar, Sabina</au><au>Nymark, Penny</au><au>Krug, Harald F.</au><au>Clift, Martin J. D.</au><au>Rothen‐Rutishauser, Barbara</au><au>Vogel, Ulla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><stitle>SMALL</stitle><addtitle>Small</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>17</volume><issue>15</issue><spage>e2007628</spage><epage>n/a</epage><pages>e2007628-n/a</pages><artnum>2007628</artnum><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Faster, cheaper, sensitive, and mechanisms‐based animal alternatives are needed to address the safety assessment needs of the growing number of nanomaterials (NM) and their sophisticated property variants. Specifically, strategies that help identify and prioritize alternative schemes involving individual test models, toxicity endpoints, and assays for the assessment of adverse outcomes, as well as strategies that enable validation and refinement of these schemes for the regulatory acceptance are needed. In this review, two strategies 1) the current nanotoxicology literature review and 2) the adverse outcome pathways (AOPs) framework, a systematic process that allows the assembly of available mechanistic information concerning a toxicological response in a simple modular format, are presented. The review highlights 1) the most frequently assessed and reported ad hoc in vivo and in vitro toxicity measurements in the literature, 2) various AOPs of relevance to inhalation toxicity of NM that are presently under development, and 3) their applicability in identifying key events of toxicity for targeted in vitro assay development. Finally, using an existing AOP for lung fibrosis, the specific combinations of cell types, exposure and test systems, and assays that are experimentally supported and thus, can be used for assessing NM‐induced lung fibrosis, are proposed. AOPs enable the systematic organisation of the existing in silico, in vivo and in vitro toxicology data (specific to NM or non‐NM data) and serve as mechanistic backbones for the establishment of potential animal reduction or replacement strategies and toxicity testing tools. Together with the information on material characterisation and exposure, they enable derivation of risk indicators.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>33559363</pmid><doi>10.1002/smll.202007628</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-6807-1524</orcidid><orcidid>https://orcid.org/0000-0002-3435-7775</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2021-04, Vol.17 (15), p.e2007628-n/a, Article 2007628
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_webofscience_primary_000616075600001
source SWEPUB Freely available online; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Assaying
Biocompatibility
Chemistry
Chemistry, Multidisciplinary
Chemistry, Physical
Fibrosis
in vitro toxicity
In vivo methods and tests
Literature reviews
lung fibrosis
Lungs
Materials Science
Materials Science, Multidisciplinary
Medicin och hälsovetenskap
Nanomaterials
nanoparticles
Nanoscience & Nanotechnology
Nanotechnology
nanotoxicity
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Respiration
risk assessment
Science & Technology
Science & Technology - Other Topics
Technology
Toxicity testing
title Non‐Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T17%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90Animal%20Strategies%20for%20Toxicity%20Assessment%20of%20Nanoscale%20Materials:%20Role%20of%20Adverse%20Outcome%20Pathways%20in%20the%20Selection%20of%20Endpoints&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Halappanavar,%20Sabina&rft.date=2021-04-01&rft.volume=17&rft.issue=15&rft.spage=e2007628&rft.epage=n/a&rft.pages=e2007628-n/a&rft.artnum=2007628&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202007628&rft_dat=%3Cproquest_webof%3E2512625716%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512625716&rft_id=info:pmid/33559363&rfr_iscdi=true