Enhanced pyrocatalysis of the pyroelectric BiFeO3/g-C3N4 heterostructure for dye decomposition driven by cold-hot temperature alternation

The BiFeO 3 /g-C 3 N 4 heterostructure, which is fabricated via a simple mixing-calcining method, benefits the significant enhancement of the pyrocatalytic performance. With the growth of g-C 3 N 4 content in the heterostructure pyrocatalysts from 0 to 25%, the decomposition ratio of Rhodamine B (Rh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced ceramics 2021-04, Vol.10 (2), p.338-346
Hauptverfasser: Chen, Mingzi, Jia, Yanmin, Li, Huamei, Wu, Zheng, Huang, Tianyin, Zhang, Hongfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 346
container_issue 2
container_start_page 338
container_title Journal of advanced ceramics
container_volume 10
creator Chen, Mingzi
Jia, Yanmin
Li, Huamei
Wu, Zheng
Huang, Tianyin
Zhang, Hongfang
description The BiFeO 3 /g-C 3 N 4 heterostructure, which is fabricated via a simple mixing-calcining method, benefits the significant enhancement of the pyrocatalytic performance. With the growth of g-C 3 N 4 content in the heterostructure pyrocatalysts from 0 to 25%, the decomposition ratio of Rhodamine B (RhB) dye after 18 cold-hot temperature fluctuation (25–65 °C) cycles increases at first and then decreases, reaching a maximum value of ∼94.2% at 10% while that of the pure BiFeO 3 is ∼67.7%. The enhanced dye decomposition may be due to the generation of the internal electric field which strengthens the separation of the positive and negative carriers and further accelerates their migrations. The intermediate products in the pyrocatalytic reaction also have been detected and confirmed, which proves the key role of the pyroelectric effect in realizing the dye decomposition using BiFeO 3 /g-C 3 N 4 heterostructure catalyst. The pyroelectric BiFeO 3 /g-C 3 N 4 heterostructure shows the potential application in pyrocatalytically degrading dye wastewater.
doi_str_mv 10.1007/s40145-020-0446-x
format Article
fullrecord <record><control><sourceid>wanfang_jour_webof</sourceid><recordid>TN_cdi_webofscience_primary_000615218400003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>xjtc_e202102013</wanfj_id><sourcerecordid>xjtc_e202102013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-390a52a8522737e9f7eee12c45f5114c862284bc4736efcb78649337fc7db44f3</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEElXbB2BniQUL5NZ_iZMlRC2tVNFNWVuOcz2TUcYOtgOTR-Ct8UwqukLqylfWd47OvacoPlByRQmR11EQKkpMGMFEiAof3hRnjDGJ65LUb09zhQUl9fviMsYdIYRyQZtGnhV_btxWOwM9mpbgjU56XOIQkbcobeH0CSOYFAaDvg638MivN7jl3wXaQoLgYwqzSXMAZH1A_QKoB-P3k49DGrxDfRh-gUPdgowfe7z1CSXYTxD0SaTHbOL0Eb0o3lk9Rrh8fs-LH7c3T-0dfnj8dt9-ecCGNzRh3hBdMl2XeT8uobESACgzorQlpcLUFWO16IyQvAJrOllXouFcWiP7TgjLz4tPq-9v7ax2G7Xzc44wRnXYJaOAEUbzJSnP5MeVnIL_OUNMLygTTfbngolM0ZUy-RoxgFVTGPY6LIoSdaxHrfWobKqO9ahD1nx-zgCdt9EMkCv4p8v9VLRktBZ5Iscc9evpdkinc7Z-dilL2SqNGXcbCC8r_D_dX-jjtKs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497363424</pqid></control><display><type>article</type><title>Enhanced pyrocatalysis of the pyroelectric BiFeO3/g-C3N4 heterostructure for dye decomposition driven by cold-hot temperature alternation</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Mingzi ; Jia, Yanmin ; Li, Huamei ; Wu, Zheng ; Huang, Tianyin ; Zhang, Hongfang</creator><creatorcontrib>Chen, Mingzi ; Jia, Yanmin ; Li, Huamei ; Wu, Zheng ; Huang, Tianyin ; Zhang, Hongfang</creatorcontrib><description>The BiFeO 3 /g-C 3 N 4 heterostructure, which is fabricated via a simple mixing-calcining method, benefits the significant enhancement of the pyrocatalytic performance. With the growth of g-C 3 N 4 content in the heterostructure pyrocatalysts from 0 to 25%, the decomposition ratio of Rhodamine B (RhB) dye after 18 cold-hot temperature fluctuation (25–65 °C) cycles increases at first and then decreases, reaching a maximum value of ∼94.2% at 10% while that of the pure BiFeO 3 is ∼67.7%. The enhanced dye decomposition may be due to the generation of the internal electric field which strengthens the separation of the positive and negative carriers and further accelerates their migrations. The intermediate products in the pyrocatalytic reaction also have been detected and confirmed, which proves the key role of the pyroelectric effect in realizing the dye decomposition using BiFeO 3 /g-C 3 N 4 heterostructure catalyst. The pyroelectric BiFeO 3 /g-C 3 N 4 heterostructure shows the potential application in pyrocatalytically degrading dye wastewater.</description><identifier>ISSN: 2226-4108</identifier><identifier>EISSN: 2227-8508</identifier><identifier>DOI: 10.1007/s40145-020-0446-x</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Carbon nitride ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Decomposition ; Dyes ; Electric fields ; Glass ; Heterostructures ; Materials Science ; Materials Science, Ceramics ; Nanotechnology ; Natural Materials ; Pyroelectricity ; Research Article ; Rhodamine ; Science &amp; Technology ; Structural Materials ; Technology ; Wastewater</subject><ispartof>Journal of advanced ceramics, 2021-04, Vol.10 (2), p.338-346</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>72</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000615218400003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c391t-390a52a8522737e9f7eee12c45f5114c862284bc4736efcb78649337fc7db44f3</citedby><cites>FETCH-LOGICAL-c391t-390a52a8522737e9f7eee12c45f5114c862284bc4736efcb78649337fc7db44f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/xjtc-e/xjtc-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40145-020-0446-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s40145-020-0446-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2115,27929,27930,39263,41125,42194,51581</link.rule.ids></links><search><creatorcontrib>Chen, Mingzi</creatorcontrib><creatorcontrib>Jia, Yanmin</creatorcontrib><creatorcontrib>Li, Huamei</creatorcontrib><creatorcontrib>Wu, Zheng</creatorcontrib><creatorcontrib>Huang, Tianyin</creatorcontrib><creatorcontrib>Zhang, Hongfang</creatorcontrib><title>Enhanced pyrocatalysis of the pyroelectric BiFeO3/g-C3N4 heterostructure for dye decomposition driven by cold-hot temperature alternation</title><title>Journal of advanced ceramics</title><addtitle>J Adv Ceram</addtitle><addtitle>J ADV CERAM</addtitle><description>The BiFeO 3 /g-C 3 N 4 heterostructure, which is fabricated via a simple mixing-calcining method, benefits the significant enhancement of the pyrocatalytic performance. With the growth of g-C 3 N 4 content in the heterostructure pyrocatalysts from 0 to 25%, the decomposition ratio of Rhodamine B (RhB) dye after 18 cold-hot temperature fluctuation (25–65 °C) cycles increases at first and then decreases, reaching a maximum value of ∼94.2% at 10% while that of the pure BiFeO 3 is ∼67.7%. The enhanced dye decomposition may be due to the generation of the internal electric field which strengthens the separation of the positive and negative carriers and further accelerates their migrations. The intermediate products in the pyrocatalytic reaction also have been detected and confirmed, which proves the key role of the pyroelectric effect in realizing the dye decomposition using BiFeO 3 /g-C 3 N 4 heterostructure catalyst. The pyroelectric BiFeO 3 /g-C 3 N 4 heterostructure shows the potential application in pyrocatalytically degrading dye wastewater.</description><subject>Carbon nitride</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Decomposition</subject><subject>Dyes</subject><subject>Electric fields</subject><subject>Glass</subject><subject>Heterostructures</subject><subject>Materials Science</subject><subject>Materials Science, Ceramics</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Pyroelectricity</subject><subject>Research Article</subject><subject>Rhodamine</subject><subject>Science &amp; Technology</subject><subject>Structural Materials</subject><subject>Technology</subject><subject>Wastewater</subject><issn>2226-4108</issn><issn>2227-8508</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkc1u1DAUhSMEElXbB2BniQUL5NZ_iZMlRC2tVNFNWVuOcz2TUcYOtgOTR-Ct8UwqukLqylfWd47OvacoPlByRQmR11EQKkpMGMFEiAof3hRnjDGJ65LUb09zhQUl9fviMsYdIYRyQZtGnhV_btxWOwM9mpbgjU56XOIQkbcobeH0CSOYFAaDvg638MivN7jl3wXaQoLgYwqzSXMAZH1A_QKoB-P3k49DGrxDfRh-gUPdgowfe7z1CSXYTxD0SaTHbOL0Eb0o3lk9Rrh8fs-LH7c3T-0dfnj8dt9-ecCGNzRh3hBdMl2XeT8uobESACgzorQlpcLUFWO16IyQvAJrOllXouFcWiP7TgjLz4tPq-9v7ax2G7Xzc44wRnXYJaOAEUbzJSnP5MeVnIL_OUNMLygTTfbngolM0ZUy-RoxgFVTGPY6LIoSdaxHrfWobKqO9ahD1nx-zgCdt9EMkCv4p8v9VLRktBZ5Iscc9evpdkinc7Z-dilL2SqNGXcbCC8r_D_dX-jjtKs</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Chen, Mingzi</creator><creator>Jia, Yanmin</creator><creator>Li, Huamei</creator><creator>Wu, Zheng</creator><creator>Huang, Tianyin</creator><creator>Zhang, Hongfang</creator><general>Tsinghua University Press</general><general>Springer Nature</general><general>Springer Nature B.V</general><general>College of Physics and Electronic Information Engineering,Zhejiang Normal University,Jinhua 321004,China</general><general>School of Science,Xi'an University of Posts and Telecommunications,Xi'an 710121,China%College of Physics and Electronic Information Engineering,Zhejiang Normal University,Jinhua 321004,China%College of Environmental and Chemical Engineering,Xi'an Polytechnic University,Xi'an 710048,China%Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application,School of Physical Science and Technology and School of Environmental Science and Engineering,Suzhou University of Science and Technology,Suzhou 215009,China</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20210401</creationdate><title>Enhanced pyrocatalysis of the pyroelectric BiFeO3/g-C3N4 heterostructure for dye decomposition driven by cold-hot temperature alternation</title><author>Chen, Mingzi ; Jia, Yanmin ; Li, Huamei ; Wu, Zheng ; Huang, Tianyin ; Zhang, Hongfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-390a52a8522737e9f7eee12c45f5114c862284bc4736efcb78649337fc7db44f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon nitride</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Decomposition</topic><topic>Dyes</topic><topic>Electric fields</topic><topic>Glass</topic><topic>Heterostructures</topic><topic>Materials Science</topic><topic>Materials Science, Ceramics</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Pyroelectricity</topic><topic>Research Article</topic><topic>Rhodamine</topic><topic>Science &amp; Technology</topic><topic>Structural Materials</topic><topic>Technology</topic><topic>Wastewater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Mingzi</creatorcontrib><creatorcontrib>Jia, Yanmin</creatorcontrib><creatorcontrib>Li, Huamei</creatorcontrib><creatorcontrib>Wu, Zheng</creatorcontrib><creatorcontrib>Huang, Tianyin</creatorcontrib><creatorcontrib>Zhang, Hongfang</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of advanced ceramics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Mingzi</au><au>Jia, Yanmin</au><au>Li, Huamei</au><au>Wu, Zheng</au><au>Huang, Tianyin</au><au>Zhang, Hongfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced pyrocatalysis of the pyroelectric BiFeO3/g-C3N4 heterostructure for dye decomposition driven by cold-hot temperature alternation</atitle><jtitle>Journal of advanced ceramics</jtitle><stitle>J Adv Ceram</stitle><stitle>J ADV CERAM</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>10</volume><issue>2</issue><spage>338</spage><epage>346</epage><pages>338-346</pages><issn>2226-4108</issn><eissn>2227-8508</eissn><abstract>The BiFeO 3 /g-C 3 N 4 heterostructure, which is fabricated via a simple mixing-calcining method, benefits the significant enhancement of the pyrocatalytic performance. With the growth of g-C 3 N 4 content in the heterostructure pyrocatalysts from 0 to 25%, the decomposition ratio of Rhodamine B (RhB) dye after 18 cold-hot temperature fluctuation (25–65 °C) cycles increases at first and then decreases, reaching a maximum value of ∼94.2% at 10% while that of the pure BiFeO 3 is ∼67.7%. The enhanced dye decomposition may be due to the generation of the internal electric field which strengthens the separation of the positive and negative carriers and further accelerates their migrations. The intermediate products in the pyrocatalytic reaction also have been detected and confirmed, which proves the key role of the pyroelectric effect in realizing the dye decomposition using BiFeO 3 /g-C 3 N 4 heterostructure catalyst. The pyroelectric BiFeO 3 /g-C 3 N 4 heterostructure shows the potential application in pyrocatalytically degrading dye wastewater.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s40145-020-0446-x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2226-4108
ispartof Journal of advanced ceramics, 2021-04, Vol.10 (2), p.338-346
issn 2226-4108
2227-8508
language eng
recordid cdi_webofscience_primary_000615218400003
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects Carbon nitride
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composites
Decomposition
Dyes
Electric fields
Glass
Heterostructures
Materials Science
Materials Science, Ceramics
Nanotechnology
Natural Materials
Pyroelectricity
Research Article
Rhodamine
Science & Technology
Structural Materials
Technology
Wastewater
title Enhanced pyrocatalysis of the pyroelectric BiFeO3/g-C3N4 heterostructure for dye decomposition driven by cold-hot temperature alternation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T02%3A47%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20pyrocatalysis%20of%20the%20pyroelectric%20BiFeO3/g-C3N4%20heterostructure%20for%20dye%20decomposition%20driven%20by%20cold-hot%20temperature%20alternation&rft.jtitle=Journal%20of%20advanced%20ceramics&rft.au=Chen,%20Mingzi&rft.date=2021-04-01&rft.volume=10&rft.issue=2&rft.spage=338&rft.epage=346&rft.pages=338-346&rft.issn=2226-4108&rft.eissn=2227-8508&rft_id=info:doi/10.1007/s40145-020-0446-x&rft_dat=%3Cwanfang_jour_webof%3Exjtc_e202102013%3C/wanfang_jour_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497363424&rft_id=info:pmid/&rft_wanfj_id=xjtc_e202102013&rfr_iscdi=true