Prioritizing Type 2 Diabetes Genes by Weighted PageRank on Bilayer Heterogeneous Networks

The prevalence of diabetes mellitus has been increasing rapidly in recent years. Type 2 diabetes makes up about 90 percent cases of diabetes. The interacting mixed effects of genetics and environments build possible interpretable pathogenesis. Thus, finding the causal disease genes is crucial in its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2021-01, Vol.18 (1), p.336-346
Hauptverfasser: Shang, Haixia, Liu, Zhi-Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 346
container_issue 1
container_start_page 336
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 18
creator Shang, Haixia
Liu, Zhi-Ping
description The prevalence of diabetes mellitus has been increasing rapidly in recent years. Type 2 diabetes makes up about 90 percent cases of diabetes. The interacting mixed effects of genetics and environments build possible interpretable pathogenesis. Thus, finding the causal disease genes is crucial in its clinical diagnosis and medical treatment. Currently, network-based computational method becomes a powerful tool of systematically analyzing complex diseases, such as the identification of candidate disease genes from networks. In this paper, we propose a bioinformatics framework of prioritizing type 2 diabetes genes by leveraging the modified PageRank algorithm on bilayer biomolecular networks consisting an ensemble gene-gene regulatory network and an integrative protein-protein interaction network. We specifically weigh the networks by differential mutual information for measuring the context specificities between genes and between proteins by transcriptomic and proteomic datasets, respectively. After formulating the network into two components of known disease genes and the other normal healthy genes, we rank the diabetes genes and others by bringing the orders in the bilayer network via an improved PageRank algorithm. We conclude that these known disease genes achieve significantly higher ranks compared to these randomly-selected normal genes, and the ranks are robust and consistent in multiple validation scenarios. In functional analysis, these high-ranked genes are identified to perform relevant risks and dysfunctions of type 2 diabetes.
doi_str_mv 10.1109/TCBB.2019.2917190
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2232045105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8716303</ieee_id><sourcerecordid>2486598701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-6afeee41c74f283622c64a59d1a3c9ef12079d00c9da740ae29bd403b6a3be8b3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMofv8AESTgxcvWydfu5mjrJ4iKVMRTyO7O1mi7W5MtUn-9qa0evGQC87zDzEPIAYMeY6BPh4N-v8eB6R7XLGMa1sg2UypLtE7l-uIvVaJ0KrbITghvAFxqkJtkS8S0klpuk5cH71rvOvflmhEdzqdIOT13tsAOA73CJr7FnD6jG712WNEHO8JH27zTtqF9N7Zz9PQ6sr4dRbadBXqH3Wfr38Me2ajtOOD-qu6Sp8uL4eA6ub2_uhmc3SalkLpLUlsjomRlJmuei5TzMpVW6YpZUWqsGYdMVwClrmwmwSLXRSVBFKkVBeaF2CUny7lT337MMHRm4kKJ47H92cdwLjhIxUBF9Pgf-tbOfBO3M1zmqdJ5BixSbEmVvg3BY22m3k2snxsGZuHdLLybhXez8h4zR6vJs2KC1V_iV3QEDpeAi9f-tfOMpQKE-AbrRIYF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486598701</pqid></control><display><type>article</type><title>Prioritizing Type 2 Diabetes Genes by Weighted PageRank on Bilayer Heterogeneous Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Shang, Haixia ; Liu, Zhi-Ping</creator><creatorcontrib>Shang, Haixia ; Liu, Zhi-Ping</creatorcontrib><description>The prevalence of diabetes mellitus has been increasing rapidly in recent years. Type 2 diabetes makes up about 90 percent cases of diabetes. The interacting mixed effects of genetics and environments build possible interpretable pathogenesis. Thus, finding the causal disease genes is crucial in its clinical diagnosis and medical treatment. Currently, network-based computational method becomes a powerful tool of systematically analyzing complex diseases, such as the identification of candidate disease genes from networks. In this paper, we propose a bioinformatics framework of prioritizing type 2 diabetes genes by leveraging the modified PageRank algorithm on bilayer biomolecular networks consisting an ensemble gene-gene regulatory network and an integrative protein-protein interaction network. We specifically weigh the networks by differential mutual information for measuring the context specificities between genes and between proteins by transcriptomic and proteomic datasets, respectively. After formulating the network into two components of known disease genes and the other normal healthy genes, we rank the diabetes genes and others by bringing the orders in the bilayer network via an improved PageRank algorithm. We conclude that these known disease genes achieve significantly higher ranks compared to these randomly-selected normal genes, and the ranks are robust and consistent in multiple validation scenarios. In functional analysis, these high-ranked genes are identified to perform relevant risks and dysfunctions of type 2 diabetes.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2019.2917190</identifier><identifier>PMID: 31095494</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; bilayer network ; Bioinformatics ; Computational Biology - methods ; Computer applications ; Computer networks ; Databases, Genetic ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - genetics ; differential mutual information ; Disease ; Diseases ; Environmental effects ; Functional analysis ; Gene Regulatory Networks - genetics ; Genes ; Genetics ; Heterogeneous networks ; Humans ; Medical treatment ; Network medicine ; Networks ; Pathogenesis ; Protein interaction ; Protein Interaction Maps - genetics ; Proteins ; Proteomics ; Rats ; Search engines ; type 2 diabetes ; weighted PageRank</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2021-01, Vol.18 (1), p.336-346</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-6afeee41c74f283622c64a59d1a3c9ef12079d00c9da740ae29bd403b6a3be8b3</citedby><cites>FETCH-LOGICAL-c349t-6afeee41c74f283622c64a59d1a3c9ef12079d00c9da740ae29bd403b6a3be8b3</cites><orcidid>0000-0001-7742-9161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8716303$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8716303$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31095494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shang, Haixia</creatorcontrib><creatorcontrib>Liu, Zhi-Ping</creatorcontrib><title>Prioritizing Type 2 Diabetes Genes by Weighted PageRank on Bilayer Heterogeneous Networks</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>The prevalence of diabetes mellitus has been increasing rapidly in recent years. Type 2 diabetes makes up about 90 percent cases of diabetes. The interacting mixed effects of genetics and environments build possible interpretable pathogenesis. Thus, finding the causal disease genes is crucial in its clinical diagnosis and medical treatment. Currently, network-based computational method becomes a powerful tool of systematically analyzing complex diseases, such as the identification of candidate disease genes from networks. In this paper, we propose a bioinformatics framework of prioritizing type 2 diabetes genes by leveraging the modified PageRank algorithm on bilayer biomolecular networks consisting an ensemble gene-gene regulatory network and an integrative protein-protein interaction network. We specifically weigh the networks by differential mutual information for measuring the context specificities between genes and between proteins by transcriptomic and proteomic datasets, respectively. After formulating the network into two components of known disease genes and the other normal healthy genes, we rank the diabetes genes and others by bringing the orders in the bilayer network via an improved PageRank algorithm. We conclude that these known disease genes achieve significantly higher ranks compared to these randomly-selected normal genes, and the ranks are robust and consistent in multiple validation scenarios. In functional analysis, these high-ranked genes are identified to perform relevant risks and dysfunctions of type 2 diabetes.</description><subject>Algorithms</subject><subject>bilayer network</subject><subject>Bioinformatics</subject><subject>Computational Biology - methods</subject><subject>Computer applications</subject><subject>Computer networks</subject><subject>Databases, Genetic</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>differential mutual information</subject><subject>Disease</subject><subject>Diseases</subject><subject>Environmental effects</subject><subject>Functional analysis</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genes</subject><subject>Genetics</subject><subject>Heterogeneous networks</subject><subject>Humans</subject><subject>Medical treatment</subject><subject>Network medicine</subject><subject>Networks</subject><subject>Pathogenesis</subject><subject>Protein interaction</subject><subject>Protein Interaction Maps - genetics</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Rats</subject><subject>Search engines</subject><subject>type 2 diabetes</subject><subject>weighted PageRank</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1LAzEQhoMofv8AESTgxcvWydfu5mjrJ4iKVMRTyO7O1mi7W5MtUn-9qa0evGQC87zDzEPIAYMeY6BPh4N-v8eB6R7XLGMa1sg2UypLtE7l-uIvVaJ0KrbITghvAFxqkJtkS8S0klpuk5cH71rvOvflmhEdzqdIOT13tsAOA73CJr7FnD6jG712WNEHO8JH27zTtqF9N7Zz9PQ6sr4dRbadBXqH3Wfr38Me2ajtOOD-qu6Sp8uL4eA6ub2_uhmc3SalkLpLUlsjomRlJmuei5TzMpVW6YpZUWqsGYdMVwClrmwmwSLXRSVBFKkVBeaF2CUny7lT337MMHRm4kKJ47H92cdwLjhIxUBF9Pgf-tbOfBO3M1zmqdJ5BixSbEmVvg3BY22m3k2snxsGZuHdLLybhXez8h4zR6vJs2KC1V_iV3QEDpeAi9f-tfOMpQKE-AbrRIYF</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Shang, Haixia</creator><creator>Liu, Zhi-Ping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7742-9161</orcidid></search><sort><creationdate>202101</creationdate><title>Prioritizing Type 2 Diabetes Genes by Weighted PageRank on Bilayer Heterogeneous Networks</title><author>Shang, Haixia ; Liu, Zhi-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-6afeee41c74f283622c64a59d1a3c9ef12079d00c9da740ae29bd403b6a3be8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>bilayer network</topic><topic>Bioinformatics</topic><topic>Computational Biology - methods</topic><topic>Computer applications</topic><topic>Computer networks</topic><topic>Databases, Genetic</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>differential mutual information</topic><topic>Disease</topic><topic>Diseases</topic><topic>Environmental effects</topic><topic>Functional analysis</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genes</topic><topic>Genetics</topic><topic>Heterogeneous networks</topic><topic>Humans</topic><topic>Medical treatment</topic><topic>Network medicine</topic><topic>Networks</topic><topic>Pathogenesis</topic><topic>Protein interaction</topic><topic>Protein Interaction Maps - genetics</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Rats</topic><topic>Search engines</topic><topic>type 2 diabetes</topic><topic>weighted PageRank</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Haixia</creatorcontrib><creatorcontrib>Liu, Zhi-Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shang, Haixia</au><au>Liu, Zhi-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prioritizing Type 2 Diabetes Genes by Weighted PageRank on Bilayer Heterogeneous Networks</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2021-01</date><risdate>2021</risdate><volume>18</volume><issue>1</issue><spage>336</spage><epage>346</epage><pages>336-346</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>The prevalence of diabetes mellitus has been increasing rapidly in recent years. Type 2 diabetes makes up about 90 percent cases of diabetes. The interacting mixed effects of genetics and environments build possible interpretable pathogenesis. Thus, finding the causal disease genes is crucial in its clinical diagnosis and medical treatment. Currently, network-based computational method becomes a powerful tool of systematically analyzing complex diseases, such as the identification of candidate disease genes from networks. In this paper, we propose a bioinformatics framework of prioritizing type 2 diabetes genes by leveraging the modified PageRank algorithm on bilayer biomolecular networks consisting an ensemble gene-gene regulatory network and an integrative protein-protein interaction network. We specifically weigh the networks by differential mutual information for measuring the context specificities between genes and between proteins by transcriptomic and proteomic datasets, respectively. After formulating the network into two components of known disease genes and the other normal healthy genes, we rank the diabetes genes and others by bringing the orders in the bilayer network via an improved PageRank algorithm. We conclude that these known disease genes achieve significantly higher ranks compared to these randomly-selected normal genes, and the ranks are robust and consistent in multiple validation scenarios. In functional analysis, these high-ranked genes are identified to perform relevant risks and dysfunctions of type 2 diabetes.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31095494</pmid><doi>10.1109/TCBB.2019.2917190</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7742-9161</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2021-01, Vol.18 (1), p.336-346
issn 1545-5963
1557-9964
language eng
recordid cdi_proquest_miscellaneous_2232045105
source IEEE Electronic Library (IEL)
subjects Algorithms
bilayer network
Bioinformatics
Computational Biology - methods
Computer applications
Computer networks
Databases, Genetic
Diabetes
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - genetics
differential mutual information
Disease
Diseases
Environmental effects
Functional analysis
Gene Regulatory Networks - genetics
Genes
Genetics
Heterogeneous networks
Humans
Medical treatment
Network medicine
Networks
Pathogenesis
Protein interaction
Protein Interaction Maps - genetics
Proteins
Proteomics
Rats
Search engines
type 2 diabetes
weighted PageRank
title Prioritizing Type 2 Diabetes Genes by Weighted PageRank on Bilayer Heterogeneous Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prioritizing%20Type%202%20Diabetes%20Genes%20by%20Weighted%20PageRank%20on%20Bilayer%20Heterogeneous%20Networks&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Shang,%20Haixia&rft.date=2021-01&rft.volume=18&rft.issue=1&rft.spage=336&rft.epage=346&rft.pages=336-346&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2019.2917190&rft_dat=%3Cproquest_RIE%3E2486598701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486598701&rft_id=info:pmid/31095494&rft_ieee_id=8716303&rfr_iscdi=true