Silicon-Based Multilayer Waveguides for Integrated Photonic Devices from the Near to Mid Infrared

Advancements in spectroscopy, quantum optics, communication, and sensing require new classes of integrated photonic devices to host a wide range of non-linear optical processes involving wavelengths from the visible to the infrared. In this framework, waveguide (WG) structures designed with innovati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-02, Vol.11 (3), p.1227, Article 1227
Hauptverfasser: Garcia, Inaki Lopez, de Cumis, Mario Siciliani, Mazzotti, Davide, Galli, Iacopo, Pastor, Pablo Cancio, De Natale, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advancements in spectroscopy, quantum optics, communication, and sensing require new classes of integrated photonic devices to host a wide range of non-linear optical processes involving wavelengths from the visible to the infrared. In this framework, waveguide (WG) structures designed with innovative geometry and materials can play a key role. We report both finite element modeling and experimental characterization of silicon nitride multilayer WGs from the visible to the mid-infrared spectral regions. The simulations evaluated optical behavior and mechanical stress as a function of number of WG layers and photonic structure dimensions. WGs were optimized for waveguiding at 1550 nm and 2640 nm. Experimental characterization focused on optical behavior and coupling losses from 532 nm to 2640 nm. Measured losses in WGs indicate a quasi-perfect waveguiding behavior in the IR range (with losses below 6 dB), with a relevant increase (up to 20 dB) in the visible range.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11031227