Computation offloading game in multiple unmanned aerial vehicle‐enabled mobile edge computing networks

Because of extreme sensitivity to time and energy consumption, many computation‐ and data‐intensive tasks are difficult to implement on mobile terminals and cannot meet the needs of the rapid development of mobile networks. To solve this problem, mobile edge computing (MEC) appears to be a promising...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET communications 2021-06, Vol.15 (10), p.1392-1401
Hauptverfasser: Ren, Yanling, Xie, Zhibin, Ding, Zhenfeng, Sun, Xiyuan, Xia, Jie, Tian, Yubo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1401
container_issue 10
container_start_page 1392
container_title IET communications
container_volume 15
creator Ren, Yanling
Xie, Zhibin
Ding, Zhenfeng
Sun, Xiyuan
Xia, Jie
Tian, Yubo
description Because of extreme sensitivity to time and energy consumption, many computation‐ and data‐intensive tasks are difficult to implement on mobile terminals and cannot meet the needs of the rapid development of mobile networks. To solve this problem, mobile edge computing (MEC) appears to be a promising solution. In this study, we propose two offloading schemes in the multiple unmanned aerial vehicles (UAVs) enabled MEC network. Their optimisation goals are to minimise the global computing time and energy consumption of all UAVs, respectively. Different from previous research, the UAV can perform tasks locally or offload an appropriate percentage to the desired MEC server in the two proposed schemes. In order to get the minimum global computing time, we prove the existence condition and obtain the optimal offloading proportion. In addition, in order to minimise global energy consumption, we also obtain the optimal offloading proportion and present the optimal transmission power through solving Karush–Kuhn–Tucker conditions. Finally, because UAVs are selfish, we adopt the game theory to get optimal solutions of the proposed offloading strategies. Numerical results verify that the proposed schemes can effectively decrease the global computing time and energy consumption, especially for a large number of UAVs.
doi_str_mv 10.1049/cmu2.12102
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000614878800001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0c3eaa321bd44742b1f7df5ea772453f</doaj_id><sourcerecordid>3092278604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4032-2296f9a68ea456ddd8bc4096606376d150628822f55684fce61aa9766589dfae3</originalsourceid><addsrcrecordid>eNqNkcFO3DAURaOKSqW0m35BpO6oBmzHsZ1lFRWKBGIDa-vFfh48Teypk4DY9RP6jXxJPRM0y4qVn_zOvb7WLYovlJxRwptzM8zsjDJK2LvimMqarpSoxNFhZupD8XEcN4TUteD8uHho47CdJ5h8DGV0ro9gfViXaxiw9KEc5n7y2x7LOQwQAtoSMHnoy0d88KbHlz9_MUDX58UQO59BtGsszd51ZxRweorp1_ipeO-gH_Hz63lS3F_8uGt_rq5vL6_a79crw0nFVow1wjUgFAKvhbVWdXnRCEFEJYWlNcl_UIy5nF9xZ1BQgEYKUavGOsDqpLhafG2Ejd4mP0B61hG83l_EtNaQpl10TUyFABWjneVcctZRJ62rEaRkvK5c9vq6eG1T_D3jOOlNnFPI8XVFGsakEoRn6nShTIrjmNAdXqVE71rRu1b0vpUMf1vgJ-yiG43HYPAgIIQIypVUKk-EZlq9nW79UmMb5zBlKX2V5lKe_xNJtzf3bAn3D8XCsN4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092278604</pqid></control><display><type>article</type><title>Computation offloading game in multiple unmanned aerial vehicle‐enabled mobile edge computing networks</title><source>Wiley Online Library - AutoHoldings Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Ren, Yanling ; Xie, Zhibin ; Ding, Zhenfeng ; Sun, Xiyuan ; Xia, Jie ; Tian, Yubo</creator><creatorcontrib>Ren, Yanling ; Xie, Zhibin ; Ding, Zhenfeng ; Sun, Xiyuan ; Xia, Jie ; Tian, Yubo</creatorcontrib><description>Because of extreme sensitivity to time and energy consumption, many computation‐ and data‐intensive tasks are difficult to implement on mobile terminals and cannot meet the needs of the rapid development of mobile networks. To solve this problem, mobile edge computing (MEC) appears to be a promising solution. In this study, we propose two offloading schemes in the multiple unmanned aerial vehicles (UAVs) enabled MEC network. Their optimisation goals are to minimise the global computing time and energy consumption of all UAVs, respectively. Different from previous research, the UAV can perform tasks locally or offload an appropriate percentage to the desired MEC server in the two proposed schemes. In order to get the minimum global computing time, we prove the existence condition and obtain the optimal offloading proportion. In addition, in order to minimise global energy consumption, we also obtain the optimal offloading proportion and present the optimal transmission power through solving Karush–Kuhn–Tucker conditions. Finally, because UAVs are selfish, we adopt the game theory to get optimal solutions of the proposed offloading strategies. Numerical results verify that the proposed schemes can effectively decrease the global computing time and energy consumption, especially for a large number of UAVs.</description><identifier>ISSN: 1751-8628</identifier><identifier>EISSN: 1751-8636</identifier><identifier>DOI: 10.1049/cmu2.12102</identifier><language>eng</language><publisher>HERTFORD: Inst Engineering Technology-Iet</publisher><subject>Aerospace control ; Algorithms ; Computation offloading ; Computing time ; Edge computing ; Energy consumption ; Energy resources ; Engineering ; Engineering, Electrical &amp; Electronic ; Game theory ; Integer programming ; Internet software ; Kuhn-Tucker method ; Mobile computing ; Mobile radio systems ; Mobile robots ; Optimisation techniques ; Science &amp; Technology ; Simulation ; Technology ; Unmanned aerial vehicles ; Wireless communications</subject><ispartof>IET communications, 2021-06, Vol.15 (10), p.1392-1401</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd on behalf of The Institution of Engineering and Technology</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000614878800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4032-2296f9a68ea456ddd8bc4096606376d150628822f55684fce61aa9766589dfae3</citedby><cites>FETCH-LOGICAL-c4032-2296f9a68ea456ddd8bc4096606376d150628822f55684fce61aa9766589dfae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fcmu2.12102$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fcmu2.12102$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,1419,2104,2116,11569,27931,27932,39265,45581,45582,46059,46483</link.rule.ids></links><search><creatorcontrib>Ren, Yanling</creatorcontrib><creatorcontrib>Xie, Zhibin</creatorcontrib><creatorcontrib>Ding, Zhenfeng</creatorcontrib><creatorcontrib>Sun, Xiyuan</creatorcontrib><creatorcontrib>Xia, Jie</creatorcontrib><creatorcontrib>Tian, Yubo</creatorcontrib><title>Computation offloading game in multiple unmanned aerial vehicle‐enabled mobile edge computing networks</title><title>IET communications</title><addtitle>IET COMMUN</addtitle><description>Because of extreme sensitivity to time and energy consumption, many computation‐ and data‐intensive tasks are difficult to implement on mobile terminals and cannot meet the needs of the rapid development of mobile networks. To solve this problem, mobile edge computing (MEC) appears to be a promising solution. In this study, we propose two offloading schemes in the multiple unmanned aerial vehicles (UAVs) enabled MEC network. Their optimisation goals are to minimise the global computing time and energy consumption of all UAVs, respectively. Different from previous research, the UAV can perform tasks locally or offload an appropriate percentage to the desired MEC server in the two proposed schemes. In order to get the minimum global computing time, we prove the existence condition and obtain the optimal offloading proportion. In addition, in order to minimise global energy consumption, we also obtain the optimal offloading proportion and present the optimal transmission power through solving Karush–Kuhn–Tucker conditions. Finally, because UAVs are selfish, we adopt the game theory to get optimal solutions of the proposed offloading strategies. Numerical results verify that the proposed schemes can effectively decrease the global computing time and energy consumption, especially for a large number of UAVs.</description><subject>Aerospace control</subject><subject>Algorithms</subject><subject>Computation offloading</subject><subject>Computing time</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Energy resources</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Game theory</subject><subject>Integer programming</subject><subject>Internet software</subject><subject>Kuhn-Tucker method</subject><subject>Mobile computing</subject><subject>Mobile radio systems</subject><subject>Mobile robots</subject><subject>Optimisation techniques</subject><subject>Science &amp; Technology</subject><subject>Simulation</subject><subject>Technology</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communications</subject><issn>1751-8628</issn><issn>1751-8636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>HGBXW</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkcFO3DAURaOKSqW0m35BpO6oBmzHsZ1lFRWKBGIDa-vFfh48Teypk4DY9RP6jXxJPRM0y4qVn_zOvb7WLYovlJxRwptzM8zsjDJK2LvimMqarpSoxNFhZupD8XEcN4TUteD8uHho47CdJ5h8DGV0ro9gfViXaxiw9KEc5n7y2x7LOQwQAtoSMHnoy0d88KbHlz9_MUDX58UQO59BtGsszd51ZxRweorp1_ipeO-gH_Hz63lS3F_8uGt_rq5vL6_a79crw0nFVow1wjUgFAKvhbVWdXnRCEFEJYWlNcl_UIy5nF9xZ1BQgEYKUavGOsDqpLhafG2Ejd4mP0B61hG83l_EtNaQpl10TUyFABWjneVcctZRJ62rEaRkvK5c9vq6eG1T_D3jOOlNnFPI8XVFGsakEoRn6nShTIrjmNAdXqVE71rRu1b0vpUMf1vgJ-yiG43HYPAgIIQIypVUKk-EZlq9nW79UmMb5zBlKX2V5lKe_xNJtzf3bAn3D8XCsN4</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Ren, Yanling</creator><creator>Xie, Zhibin</creator><creator>Ding, Zhenfeng</creator><creator>Sun, Xiyuan</creator><creator>Xia, Jie</creator><creator>Tian, Yubo</creator><general>Inst Engineering Technology-Iet</general><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><scope>DOA</scope></search><sort><creationdate>202106</creationdate><title>Computation offloading game in multiple unmanned aerial vehicle‐enabled mobile edge computing networks</title><author>Ren, Yanling ; Xie, Zhibin ; Ding, Zhenfeng ; Sun, Xiyuan ; Xia, Jie ; Tian, Yubo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4032-2296f9a68ea456ddd8bc4096606376d150628822f55684fce61aa9766589dfae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerospace control</topic><topic>Algorithms</topic><topic>Computation offloading</topic><topic>Computing time</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Energy resources</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Game theory</topic><topic>Integer programming</topic><topic>Internet software</topic><topic>Kuhn-Tucker method</topic><topic>Mobile computing</topic><topic>Mobile radio systems</topic><topic>Mobile robots</topic><topic>Optimisation techniques</topic><topic>Science &amp; Technology</topic><topic>Simulation</topic><topic>Technology</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Yanling</creatorcontrib><creatorcontrib>Xie, Zhibin</creatorcontrib><creatorcontrib>Ding, Zhenfeng</creatorcontrib><creatorcontrib>Sun, Xiyuan</creatorcontrib><creatorcontrib>Xia, Jie</creatorcontrib><creatorcontrib>Tian, Yubo</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IET communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Yanling</au><au>Xie, Zhibin</au><au>Ding, Zhenfeng</au><au>Sun, Xiyuan</au><au>Xia, Jie</au><au>Tian, Yubo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation offloading game in multiple unmanned aerial vehicle‐enabled mobile edge computing networks</atitle><jtitle>IET communications</jtitle><stitle>IET COMMUN</stitle><date>2021-06</date><risdate>2021</risdate><volume>15</volume><issue>10</issue><spage>1392</spage><epage>1401</epage><pages>1392-1401</pages><issn>1751-8628</issn><eissn>1751-8636</eissn><abstract>Because of extreme sensitivity to time and energy consumption, many computation‐ and data‐intensive tasks are difficult to implement on mobile terminals and cannot meet the needs of the rapid development of mobile networks. To solve this problem, mobile edge computing (MEC) appears to be a promising solution. In this study, we propose two offloading schemes in the multiple unmanned aerial vehicles (UAVs) enabled MEC network. Their optimisation goals are to minimise the global computing time and energy consumption of all UAVs, respectively. Different from previous research, the UAV can perform tasks locally or offload an appropriate percentage to the desired MEC server in the two proposed schemes. In order to get the minimum global computing time, we prove the existence condition and obtain the optimal offloading proportion. In addition, in order to minimise global energy consumption, we also obtain the optimal offloading proportion and present the optimal transmission power through solving Karush–Kuhn–Tucker conditions. Finally, because UAVs are selfish, we adopt the game theory to get optimal solutions of the proposed offloading strategies. Numerical results verify that the proposed schemes can effectively decrease the global computing time and energy consumption, especially for a large number of UAVs.</abstract><cop>HERTFORD</cop><pub>Inst Engineering Technology-Iet</pub><doi>10.1049/cmu2.12102</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8628
ispartof IET communications, 2021-06, Vol.15 (10), p.1392-1401
issn 1751-8628
1751-8636
language eng
recordid cdi_webofscience_primary_000614878800001
source Wiley Online Library - AutoHoldings Journals; DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Aerospace control
Algorithms
Computation offloading
Computing time
Edge computing
Energy consumption
Energy resources
Engineering
Engineering, Electrical & Electronic
Game theory
Integer programming
Internet software
Kuhn-Tucker method
Mobile computing
Mobile radio systems
Mobile robots
Optimisation techniques
Science & Technology
Simulation
Technology
Unmanned aerial vehicles
Wireless communications
title Computation offloading game in multiple unmanned aerial vehicle‐enabled mobile edge computing networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T06%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20offloading%20game%20in%20multiple%20unmanned%20aerial%20vehicle%E2%80%90enabled%20mobile%20edge%20computing%20networks&rft.jtitle=IET%20communications&rft.au=Ren,%20Yanling&rft.date=2021-06&rft.volume=15&rft.issue=10&rft.spage=1392&rft.epage=1401&rft.pages=1392-1401&rft.issn=1751-8628&rft.eissn=1751-8636&rft_id=info:doi/10.1049/cmu2.12102&rft_dat=%3Cproquest_webof%3E3092278604%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092278604&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_0c3eaa321bd44742b1f7df5ea772453f&rfr_iscdi=true