Computation offloading game in multiple unmanned aerial vehicle‐enabled mobile edge computing networks
Because of extreme sensitivity to time and energy consumption, many computation‐ and data‐intensive tasks are difficult to implement on mobile terminals and cannot meet the needs of the rapid development of mobile networks. To solve this problem, mobile edge computing (MEC) appears to be a promising...
Gespeichert in:
Veröffentlicht in: | IET communications 2021-06, Vol.15 (10), p.1392-1401 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1401 |
---|---|
container_issue | 10 |
container_start_page | 1392 |
container_title | IET communications |
container_volume | 15 |
creator | Ren, Yanling Xie, Zhibin Ding, Zhenfeng Sun, Xiyuan Xia, Jie Tian, Yubo |
description | Because of extreme sensitivity to time and energy consumption, many computation‐ and data‐intensive tasks are difficult to implement on mobile terminals and cannot meet the needs of the rapid development of mobile networks. To solve this problem, mobile edge computing (MEC) appears to be a promising solution. In this study, we propose two offloading schemes in the multiple unmanned aerial vehicles (UAVs) enabled MEC network. Their optimisation goals are to minimise the global computing time and energy consumption of all UAVs, respectively. Different from previous research, the UAV can perform tasks locally or offload an appropriate percentage to the desired MEC server in the two proposed schemes. In order to get the minimum global computing time, we prove the existence condition and obtain the optimal offloading proportion. In addition, in order to minimise global energy consumption, we also obtain the optimal offloading proportion and present the optimal transmission power through solving Karush–Kuhn–Tucker conditions. Finally, because UAVs are selfish, we adopt the game theory to get optimal solutions of the proposed offloading strategies. Numerical results verify that the proposed schemes can effectively decrease the global computing time and energy consumption, especially for a large number of UAVs. |
doi_str_mv | 10.1049/cmu2.12102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000614878800001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0c3eaa321bd44742b1f7df5ea772453f</doaj_id><sourcerecordid>3092278604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4032-2296f9a68ea456ddd8bc4096606376d150628822f55684fce61aa9766589dfae3</originalsourceid><addsrcrecordid>eNqNkcFO3DAURaOKSqW0m35BpO6oBmzHsZ1lFRWKBGIDa-vFfh48Teypk4DY9RP6jXxJPRM0y4qVn_zOvb7WLYovlJxRwptzM8zsjDJK2LvimMqarpSoxNFhZupD8XEcN4TUteD8uHho47CdJ5h8DGV0ro9gfViXaxiw9KEc5n7y2x7LOQwQAtoSMHnoy0d88KbHlz9_MUDX58UQO59BtGsszd51ZxRweorp1_ipeO-gH_Hz63lS3F_8uGt_rq5vL6_a79crw0nFVow1wjUgFAKvhbVWdXnRCEFEJYWlNcl_UIy5nF9xZ1BQgEYKUavGOsDqpLhafG2Ejd4mP0B61hG83l_EtNaQpl10TUyFABWjneVcctZRJ62rEaRkvK5c9vq6eG1T_D3jOOlNnFPI8XVFGsakEoRn6nShTIrjmNAdXqVE71rRu1b0vpUMf1vgJ-yiG43HYPAgIIQIypVUKk-EZlq9nW79UmMb5zBlKX2V5lKe_xNJtzf3bAn3D8XCsN4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092278604</pqid></control><display><type>article</type><title>Computation offloading game in multiple unmanned aerial vehicle‐enabled mobile edge computing networks</title><source>Wiley Online Library - AutoHoldings Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Ren, Yanling ; Xie, Zhibin ; Ding, Zhenfeng ; Sun, Xiyuan ; Xia, Jie ; Tian, Yubo</creator><creatorcontrib>Ren, Yanling ; Xie, Zhibin ; Ding, Zhenfeng ; Sun, Xiyuan ; Xia, Jie ; Tian, Yubo</creatorcontrib><description>Because of extreme sensitivity to time and energy consumption, many computation‐ and data‐intensive tasks are difficult to implement on mobile terminals and cannot meet the needs of the rapid development of mobile networks. To solve this problem, mobile edge computing (MEC) appears to be a promising solution. In this study, we propose two offloading schemes in the multiple unmanned aerial vehicles (UAVs) enabled MEC network. Their optimisation goals are to minimise the global computing time and energy consumption of all UAVs, respectively. Different from previous research, the UAV can perform tasks locally or offload an appropriate percentage to the desired MEC server in the two proposed schemes. In order to get the minimum global computing time, we prove the existence condition and obtain the optimal offloading proportion. In addition, in order to minimise global energy consumption, we also obtain the optimal offloading proportion and present the optimal transmission power through solving Karush–Kuhn–Tucker conditions. Finally, because UAVs are selfish, we adopt the game theory to get optimal solutions of the proposed offloading strategies. Numerical results verify that the proposed schemes can effectively decrease the global computing time and energy consumption, especially for a large number of UAVs.</description><identifier>ISSN: 1751-8628</identifier><identifier>EISSN: 1751-8636</identifier><identifier>DOI: 10.1049/cmu2.12102</identifier><language>eng</language><publisher>HERTFORD: Inst Engineering Technology-Iet</publisher><subject>Aerospace control ; Algorithms ; Computation offloading ; Computing time ; Edge computing ; Energy consumption ; Energy resources ; Engineering ; Engineering, Electrical & Electronic ; Game theory ; Integer programming ; Internet software ; Kuhn-Tucker method ; Mobile computing ; Mobile radio systems ; Mobile robots ; Optimisation techniques ; Science & Technology ; Simulation ; Technology ; Unmanned aerial vehicles ; Wireless communications</subject><ispartof>IET communications, 2021-06, Vol.15 (10), p.1392-1401</ispartof><rights>2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000614878800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4032-2296f9a68ea456ddd8bc4096606376d150628822f55684fce61aa9766589dfae3</citedby><cites>FETCH-LOGICAL-c4032-2296f9a68ea456ddd8bc4096606376d150628822f55684fce61aa9766589dfae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fcmu2.12102$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fcmu2.12102$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,1419,2104,2116,11569,27931,27932,39265,45581,45582,46059,46483</link.rule.ids></links><search><creatorcontrib>Ren, Yanling</creatorcontrib><creatorcontrib>Xie, Zhibin</creatorcontrib><creatorcontrib>Ding, Zhenfeng</creatorcontrib><creatorcontrib>Sun, Xiyuan</creatorcontrib><creatorcontrib>Xia, Jie</creatorcontrib><creatorcontrib>Tian, Yubo</creatorcontrib><title>Computation offloading game in multiple unmanned aerial vehicle‐enabled mobile edge computing networks</title><title>IET communications</title><addtitle>IET COMMUN</addtitle><description>Because of extreme sensitivity to time and energy consumption, many computation‐ and data‐intensive tasks are difficult to implement on mobile terminals and cannot meet the needs of the rapid development of mobile networks. To solve this problem, mobile edge computing (MEC) appears to be a promising solution. In this study, we propose two offloading schemes in the multiple unmanned aerial vehicles (UAVs) enabled MEC network. Their optimisation goals are to minimise the global computing time and energy consumption of all UAVs, respectively. Different from previous research, the UAV can perform tasks locally or offload an appropriate percentage to the desired MEC server in the two proposed schemes. In order to get the minimum global computing time, we prove the existence condition and obtain the optimal offloading proportion. In addition, in order to minimise global energy consumption, we also obtain the optimal offloading proportion and present the optimal transmission power through solving Karush–Kuhn–Tucker conditions. Finally, because UAVs are selfish, we adopt the game theory to get optimal solutions of the proposed offloading strategies. Numerical results verify that the proposed schemes can effectively decrease the global computing time and energy consumption, especially for a large number of UAVs.</description><subject>Aerospace control</subject><subject>Algorithms</subject><subject>Computation offloading</subject><subject>Computing time</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Energy resources</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Game theory</subject><subject>Integer programming</subject><subject>Internet software</subject><subject>Kuhn-Tucker method</subject><subject>Mobile computing</subject><subject>Mobile radio systems</subject><subject>Mobile robots</subject><subject>Optimisation techniques</subject><subject>Science & Technology</subject><subject>Simulation</subject><subject>Technology</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communications</subject><issn>1751-8628</issn><issn>1751-8636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>HGBXW</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkcFO3DAURaOKSqW0m35BpO6oBmzHsZ1lFRWKBGIDa-vFfh48Teypk4DY9RP6jXxJPRM0y4qVn_zOvb7WLYovlJxRwptzM8zsjDJK2LvimMqarpSoxNFhZupD8XEcN4TUteD8uHho47CdJ5h8DGV0ro9gfViXaxiw9KEc5n7y2x7LOQwQAtoSMHnoy0d88KbHlz9_MUDX58UQO59BtGsszd51ZxRweorp1_ipeO-gH_Hz63lS3F_8uGt_rq5vL6_a79crw0nFVow1wjUgFAKvhbVWdXnRCEFEJYWlNcl_UIy5nF9xZ1BQgEYKUavGOsDqpLhafG2Ejd4mP0B61hG83l_EtNaQpl10TUyFABWjneVcctZRJ62rEaRkvK5c9vq6eG1T_D3jOOlNnFPI8XVFGsakEoRn6nShTIrjmNAdXqVE71rRu1b0vpUMf1vgJ-yiG43HYPAgIIQIypVUKk-EZlq9nW79UmMb5zBlKX2V5lKe_xNJtzf3bAn3D8XCsN4</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Ren, Yanling</creator><creator>Xie, Zhibin</creator><creator>Ding, Zhenfeng</creator><creator>Sun, Xiyuan</creator><creator>Xia, Jie</creator><creator>Tian, Yubo</creator><general>Inst Engineering Technology-Iet</general><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><scope>DOA</scope></search><sort><creationdate>202106</creationdate><title>Computation offloading game in multiple unmanned aerial vehicle‐enabled mobile edge computing networks</title><author>Ren, Yanling ; Xie, Zhibin ; Ding, Zhenfeng ; Sun, Xiyuan ; Xia, Jie ; Tian, Yubo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4032-2296f9a68ea456ddd8bc4096606376d150628822f55684fce61aa9766589dfae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerospace control</topic><topic>Algorithms</topic><topic>Computation offloading</topic><topic>Computing time</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Energy resources</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Game theory</topic><topic>Integer programming</topic><topic>Internet software</topic><topic>Kuhn-Tucker method</topic><topic>Mobile computing</topic><topic>Mobile radio systems</topic><topic>Mobile robots</topic><topic>Optimisation techniques</topic><topic>Science & Technology</topic><topic>Simulation</topic><topic>Technology</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Yanling</creatorcontrib><creatorcontrib>Xie, Zhibin</creatorcontrib><creatorcontrib>Ding, Zhenfeng</creatorcontrib><creatorcontrib>Sun, Xiyuan</creatorcontrib><creatorcontrib>Xia, Jie</creatorcontrib><creatorcontrib>Tian, Yubo</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IET communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Yanling</au><au>Xie, Zhibin</au><au>Ding, Zhenfeng</au><au>Sun, Xiyuan</au><au>Xia, Jie</au><au>Tian, Yubo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation offloading game in multiple unmanned aerial vehicle‐enabled mobile edge computing networks</atitle><jtitle>IET communications</jtitle><stitle>IET COMMUN</stitle><date>2021-06</date><risdate>2021</risdate><volume>15</volume><issue>10</issue><spage>1392</spage><epage>1401</epage><pages>1392-1401</pages><issn>1751-8628</issn><eissn>1751-8636</eissn><abstract>Because of extreme sensitivity to time and energy consumption, many computation‐ and data‐intensive tasks are difficult to implement on mobile terminals and cannot meet the needs of the rapid development of mobile networks. To solve this problem, mobile edge computing (MEC) appears to be a promising solution. In this study, we propose two offloading schemes in the multiple unmanned aerial vehicles (UAVs) enabled MEC network. Their optimisation goals are to minimise the global computing time and energy consumption of all UAVs, respectively. Different from previous research, the UAV can perform tasks locally or offload an appropriate percentage to the desired MEC server in the two proposed schemes. In order to get the minimum global computing time, we prove the existence condition and obtain the optimal offloading proportion. In addition, in order to minimise global energy consumption, we also obtain the optimal offloading proportion and present the optimal transmission power through solving Karush–Kuhn–Tucker conditions. Finally, because UAVs are selfish, we adopt the game theory to get optimal solutions of the proposed offloading strategies. Numerical results verify that the proposed schemes can effectively decrease the global computing time and energy consumption, especially for a large number of UAVs.</abstract><cop>HERTFORD</cop><pub>Inst Engineering Technology-Iet</pub><doi>10.1049/cmu2.12102</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8628 |
ispartof | IET communications, 2021-06, Vol.15 (10), p.1392-1401 |
issn | 1751-8628 1751-8636 |
language | eng |
recordid | cdi_webofscience_primary_000614878800001 |
source | Wiley Online Library - AutoHoldings Journals; DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection) |
subjects | Aerospace control Algorithms Computation offloading Computing time Edge computing Energy consumption Energy resources Engineering Engineering, Electrical & Electronic Game theory Integer programming Internet software Kuhn-Tucker method Mobile computing Mobile radio systems Mobile robots Optimisation techniques Science & Technology Simulation Technology Unmanned aerial vehicles Wireless communications |
title | Computation offloading game in multiple unmanned aerial vehicle‐enabled mobile edge computing networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T06%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20offloading%20game%20in%20multiple%20unmanned%20aerial%20vehicle%E2%80%90enabled%20mobile%20edge%20computing%20networks&rft.jtitle=IET%20communications&rft.au=Ren,%20Yanling&rft.date=2021-06&rft.volume=15&rft.issue=10&rft.spage=1392&rft.epage=1401&rft.pages=1392-1401&rft.issn=1751-8628&rft.eissn=1751-8636&rft_id=info:doi/10.1049/cmu2.12102&rft_dat=%3Cproquest_webof%3E3092278604%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092278604&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_0c3eaa321bd44742b1f7df5ea772453f&rfr_iscdi=true |