Deep Learning-Based Classification and Voxel-Based Visualization of Frontotemporal Dementia and Alzheimer's Disease
Frontotemporal dementia (FTD) and Alzheimer's disease (AD) have overlapping symptoms, and accurate differential diagnosis is important for targeted intervention and treatment. Previous studies suggest that the deep learning (DL) techniques have the potential to solve the differential diagnosis...
Gespeichert in:
Veröffentlicht in: | Frontiers in neuroscience 2021-01, Vol.14, p.626154-626154, Article 626154 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 626154 |
---|---|
container_issue | |
container_start_page | 626154 |
container_title | Frontiers in neuroscience |
container_volume | 14 |
creator | Hu, Jingjing Qing, Zhao Liu, Renyuan Zhang, Xin Lv, Pin Wang, Maoxue Wang, Yang He, Kelei Gao, Yang Zhang, Bing |
description | Frontotemporal dementia (FTD) and Alzheimer's disease (AD) have overlapping symptoms, and accurate differential diagnosis is important for targeted intervention and treatment. Previous studies suggest that the deep learning (DL) techniques have the potential to solve the differential diagnosis problem of FTD, AD and normal controls (NCs), but its performance is still unclear. In addition, existing DL-assisted diagnostic studies still rely on hypothesis-based expert-level preprocessing. On the one hand, it imposes high requirements on clinicians and data themselves; On the other hand, it hinders the backtracking of classification results to the original image data, resulting in the classification results cannot be interpreted intuitively. In the current study, a large cohort of 3D T1-weighted structural magnetic resonance imaging (MRI) volumes (n = 4,099) was collected from two publicly available databases, i.e., the ADNI and the NIFD. We trained a DL-based network directly based on raw T1 images to classify FTD, AD and corresponding NCs. And we evaluated the convergence speed, differential diagnosis ability, robustness and generalizability under nine scenarios. The proposed network yielded an accuracy of 91.83% based on the most common T1-weighted sequence [magnetization-prepared rapid acquisition with gradient echo (MPRAGE)]. The knowledge learned by the DL network through multiple classification tasks can also be used to solve subproblems, and the knowledge is generalizable and not limited to a specified dataset. Furthermore, we applied a gradient visualization algorithm based on guided backpropagation to calculate the contribution graph, which tells us intuitively why the DL-based networks make each decision. The regions making valuable contributions to FTD were more widespread in the right frontal white matter regions, while the left temporal, bilateral inferior frontal and parahippocampal regions were contributors to the classification of AD. Our results demonstrated that DL-based networks have the ability to solve the enigma of differential diagnosis of diseases without any hypothesis-based preprocessing. Moreover, they may mine the potential patterns that may be different from human clinicians, which may provide new insight into the understanding of FTD and AD. |
doi_str_mv | 10.3389/fnins.2020.626154 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000614416500001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_71f595221ee24a04a75b0fc4437e10fc</doaj_id><sourcerecordid>2487433409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-d45b1ce8bfe183dffb38c1c17572f61b14cdf6034a6faaefa1efc919784932f23</originalsourceid><addsrcrecordid>eNqNks1u1DAUhSMEoqXwAGxQJBYgoRn8GzsbpJKhUGkkNlCxsxzneupRYk_thJ8-Pe5kGFFWrHKV-51PudEpiucYLSmV9VvrnU9LgghaVqTCnD0oTnFVkQXj9NvD48zkSfEkpS1CFZGMPC5OKOUcC8pPi7QC2JVr0DG7Nov3OkFXNr1OyVln9OiCL7XvyqvwE_rD-sqlSffudt4GW17E4McwwrALUfflCgbwo9P74Hl_ew1ugPgqlSuXIBueFo-s7hM8OzzPiq8XH740nxbrzx8vm_P1wrCajouO8RYbkK0FLGlnbUulwQYLLoitcIuZ6WyFKNOV1RqsxmBNjWshc5xYQs-Ky9nbBb1Vu-gGHX-poJ3avwhxo3QcnelBCWx5zQnBAIRpxLTgLbKGMSoA5yG73s2u3dQO0Jl8YD71nvT-xrtrtQnflZBcVoJmweuDIIabCdKoBpcM9L32EKakCJOCUcpQndGX_6DbMEWff1WmRM2FRJJlCs-UiSGlCPb4MRipu3qofT3UXT3UXI-cefH3FcfEnz5kQM7AD2iDTcaBN3DEUG4QZgxXPE8IN27cV6AJkx9z9M3_R-lvGobZzw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479578084</pqid></control><display><type>article</type><title>Deep Learning-Based Classification and Voxel-Based Visualization of Frontotemporal Dementia and Alzheimer's Disease</title><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Hu, Jingjing ; Qing, Zhao ; Liu, Renyuan ; Zhang, Xin ; Lv, Pin ; Wang, Maoxue ; Wang, Yang ; He, Kelei ; Gao, Yang ; Zhang, Bing</creator><creatorcontrib>Hu, Jingjing ; Qing, Zhao ; Liu, Renyuan ; Zhang, Xin ; Lv, Pin ; Wang, Maoxue ; Wang, Yang ; He, Kelei ; Gao, Yang ; Zhang, Bing ; Frontotemporal Lobar Degeneration ; Alzheimers Dis Neuroimaging Initia</creatorcontrib><description>Frontotemporal dementia (FTD) and Alzheimer's disease (AD) have overlapping symptoms, and accurate differential diagnosis is important for targeted intervention and treatment. Previous studies suggest that the deep learning (DL) techniques have the potential to solve the differential diagnosis problem of FTD, AD and normal controls (NCs), but its performance is still unclear. In addition, existing DL-assisted diagnostic studies still rely on hypothesis-based expert-level preprocessing. On the one hand, it imposes high requirements on clinicians and data themselves; On the other hand, it hinders the backtracking of classification results to the original image data, resulting in the classification results cannot be interpreted intuitively. In the current study, a large cohort of 3D T1-weighted structural magnetic resonance imaging (MRI) volumes (n = 4,099) was collected from two publicly available databases, i.e., the ADNI and the NIFD. We trained a DL-based network directly based on raw T1 images to classify FTD, AD and corresponding NCs. And we evaluated the convergence speed, differential diagnosis ability, robustness and generalizability under nine scenarios. The proposed network yielded an accuracy of 91.83% based on the most common T1-weighted sequence [magnetization-prepared rapid acquisition with gradient echo (MPRAGE)]. The knowledge learned by the DL network through multiple classification tasks can also be used to solve subproblems, and the knowledge is generalizable and not limited to a specified dataset. Furthermore, we applied a gradient visualization algorithm based on guided backpropagation to calculate the contribution graph, which tells us intuitively why the DL-based networks make each decision. The regions making valuable contributions to FTD were more widespread in the right frontal white matter regions, while the left temporal, bilateral inferior frontal and parahippocampal regions were contributors to the classification of AD. Our results demonstrated that DL-based networks have the ability to solve the enigma of differential diagnosis of diseases without any hypothesis-based preprocessing. Moreover, they may mine the potential patterns that may be different from human clinicians, which may provide new insight into the understanding of FTD and AD.</description><identifier>ISSN: 1662-4548</identifier><identifier>ISSN: 1662-453X</identifier><identifier>EISSN: 1662-453X</identifier><identifier>DOI: 10.3389/fnins.2020.626154</identifier><identifier>PMID: 33551735</identifier><language>eng</language><publisher>LAUSANNE: Frontiers Media Sa</publisher><subject>Algorithms ; Alzheimer's disease ; Classification ; Clinical medicine ; convolutional neural network ; Decision making ; Deep learning ; Dementia ; Dementia disorders ; Design ; Differential diagnosis ; Frontotemporal dementia ; Hypotheses ; Life Sciences & Biomedicine ; Magnetic resonance imaging ; MRI ; Neurodegenerative diseases ; Neuroscience ; Neurosciences ; Neurosciences & Neurology ; Parahippocampal gyrus ; Patients ; Science & Technology ; Substantia alba ; visulization</subject><ispartof>Frontiers in neuroscience, 2021-01, Vol.14, p.626154-626154, Article 626154</ispartof><rights>Copyright © 2021 Hu, Qing, Liu, Zhang, Lv, Wang, Wang, He, Gao and Zhang.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2021 Hu, Qing, Liu, Zhang, Lv, Wang, Wang, He, Gao and Zhang. 2021 Hu, Qing, Liu, Zhang, Lv, Wang, Wang, He, Gao and Zhang</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000614416500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c493t-d45b1ce8bfe183dffb38c1c17572f61b14cdf6034a6faaefa1efc919784932f23</citedby><cites>FETCH-LOGICAL-c493t-d45b1ce8bfe183dffb38c1c17572f61b14cdf6034a6faaefa1efc919784932f23</cites><orcidid>0000-0002-9816-3611 ; 0000-0003-4688-7586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7858673/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7858673/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33551735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Jingjing</creatorcontrib><creatorcontrib>Qing, Zhao</creatorcontrib><creatorcontrib>Liu, Renyuan</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Lv, Pin</creatorcontrib><creatorcontrib>Wang, Maoxue</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>He, Kelei</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><creatorcontrib>Frontotemporal Lobar Degeneration</creatorcontrib><creatorcontrib>Alzheimers Dis Neuroimaging Initia</creatorcontrib><title>Deep Learning-Based Classification and Voxel-Based Visualization of Frontotemporal Dementia and Alzheimer's Disease</title><title>Frontiers in neuroscience</title><addtitle>FRONT NEUROSCI-SWITZ</addtitle><addtitle>Front Neurosci</addtitle><description>Frontotemporal dementia (FTD) and Alzheimer's disease (AD) have overlapping symptoms, and accurate differential diagnosis is important for targeted intervention and treatment. Previous studies suggest that the deep learning (DL) techniques have the potential to solve the differential diagnosis problem of FTD, AD and normal controls (NCs), but its performance is still unclear. In addition, existing DL-assisted diagnostic studies still rely on hypothesis-based expert-level preprocessing. On the one hand, it imposes high requirements on clinicians and data themselves; On the other hand, it hinders the backtracking of classification results to the original image data, resulting in the classification results cannot be interpreted intuitively. In the current study, a large cohort of 3D T1-weighted structural magnetic resonance imaging (MRI) volumes (n = 4,099) was collected from two publicly available databases, i.e., the ADNI and the NIFD. We trained a DL-based network directly based on raw T1 images to classify FTD, AD and corresponding NCs. And we evaluated the convergence speed, differential diagnosis ability, robustness and generalizability under nine scenarios. The proposed network yielded an accuracy of 91.83% based on the most common T1-weighted sequence [magnetization-prepared rapid acquisition with gradient echo (MPRAGE)]. The knowledge learned by the DL network through multiple classification tasks can also be used to solve subproblems, and the knowledge is generalizable and not limited to a specified dataset. Furthermore, we applied a gradient visualization algorithm based on guided backpropagation to calculate the contribution graph, which tells us intuitively why the DL-based networks make each decision. The regions making valuable contributions to FTD were more widespread in the right frontal white matter regions, while the left temporal, bilateral inferior frontal and parahippocampal regions were contributors to the classification of AD. Our results demonstrated that DL-based networks have the ability to solve the enigma of differential diagnosis of diseases without any hypothesis-based preprocessing. Moreover, they may mine the potential patterns that may be different from human clinicians, which may provide new insight into the understanding of FTD and AD.</description><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Classification</subject><subject>Clinical medicine</subject><subject>convolutional neural network</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Dementia</subject><subject>Dementia disorders</subject><subject>Design</subject><subject>Differential diagnosis</subject><subject>Frontotemporal dementia</subject><subject>Hypotheses</subject><subject>Life Sciences & Biomedicine</subject><subject>Magnetic resonance imaging</subject><subject>MRI</subject><subject>Neurodegenerative diseases</subject><subject>Neuroscience</subject><subject>Neurosciences</subject><subject>Neurosciences & Neurology</subject><subject>Parahippocampal gyrus</subject><subject>Patients</subject><subject>Science & Technology</subject><subject>Substantia alba</subject><subject>visulization</subject><issn>1662-4548</issn><issn>1662-453X</issn><issn>1662-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1u1DAUhSMEoqXwAGxQJBYgoRn8GzsbpJKhUGkkNlCxsxzneupRYk_thJ8-Pe5kGFFWrHKV-51PudEpiucYLSmV9VvrnU9LgghaVqTCnD0oTnFVkQXj9NvD48zkSfEkpS1CFZGMPC5OKOUcC8pPi7QC2JVr0DG7Nov3OkFXNr1OyVln9OiCL7XvyqvwE_rD-sqlSffudt4GW17E4McwwrALUfflCgbwo9P74Hl_ew1ugPgqlSuXIBueFo-s7hM8OzzPiq8XH740nxbrzx8vm_P1wrCajouO8RYbkK0FLGlnbUulwQYLLoitcIuZ6WyFKNOV1RqsxmBNjWshc5xYQs-Ky9nbBb1Vu-gGHX-poJ3avwhxo3QcnelBCWx5zQnBAIRpxLTgLbKGMSoA5yG73s2u3dQO0Jl8YD71nvT-xrtrtQnflZBcVoJmweuDIIabCdKoBpcM9L32EKakCJOCUcpQndGX_6DbMEWff1WmRM2FRJJlCs-UiSGlCPb4MRipu3qofT3UXT3UXI-cefH3FcfEnz5kQM7AD2iDTcaBN3DEUG4QZgxXPE8IN27cV6AJkx9z9M3_R-lvGobZzw</recordid><startdate>20210121</startdate><enddate>20210121</enddate><creator>Hu, Jingjing</creator><creator>Qing, Zhao</creator><creator>Liu, Renyuan</creator><creator>Zhang, Xin</creator><creator>Lv, Pin</creator><creator>Wang, Maoxue</creator><creator>Wang, Yang</creator><creator>He, Kelei</creator><creator>Gao, Yang</creator><creator>Zhang, Bing</creator><general>Frontiers Media Sa</general><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9816-3611</orcidid><orcidid>https://orcid.org/0000-0003-4688-7586</orcidid></search><sort><creationdate>20210121</creationdate><title>Deep Learning-Based Classification and Voxel-Based Visualization of Frontotemporal Dementia and Alzheimer's Disease</title><author>Hu, Jingjing ; Qing, Zhao ; Liu, Renyuan ; Zhang, Xin ; Lv, Pin ; Wang, Maoxue ; Wang, Yang ; He, Kelei ; Gao, Yang ; Zhang, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-d45b1ce8bfe183dffb38c1c17572f61b14cdf6034a6faaefa1efc919784932f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Classification</topic><topic>Clinical medicine</topic><topic>convolutional neural network</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Dementia</topic><topic>Dementia disorders</topic><topic>Design</topic><topic>Differential diagnosis</topic><topic>Frontotemporal dementia</topic><topic>Hypotheses</topic><topic>Life Sciences & Biomedicine</topic><topic>Magnetic resonance imaging</topic><topic>MRI</topic><topic>Neurodegenerative diseases</topic><topic>Neuroscience</topic><topic>Neurosciences</topic><topic>Neurosciences & Neurology</topic><topic>Parahippocampal gyrus</topic><topic>Patients</topic><topic>Science & Technology</topic><topic>Substantia alba</topic><topic>visulization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Jingjing</creatorcontrib><creatorcontrib>Qing, Zhao</creatorcontrib><creatorcontrib>Liu, Renyuan</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Lv, Pin</creatorcontrib><creatorcontrib>Wang, Maoxue</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>He, Kelei</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><creatorcontrib>Frontotemporal Lobar Degeneration</creatorcontrib><creatorcontrib>Alzheimers Dis Neuroimaging Initia</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Jingjing</au><au>Qing, Zhao</au><au>Liu, Renyuan</au><au>Zhang, Xin</au><au>Lv, Pin</au><au>Wang, Maoxue</au><au>Wang, Yang</au><au>He, Kelei</au><au>Gao, Yang</au><au>Zhang, Bing</au><aucorp>Frontotemporal Lobar Degeneration</aucorp><aucorp>Alzheimers Dis Neuroimaging Initia</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-Based Classification and Voxel-Based Visualization of Frontotemporal Dementia and Alzheimer's Disease</atitle><jtitle>Frontiers in neuroscience</jtitle><stitle>FRONT NEUROSCI-SWITZ</stitle><addtitle>Front Neurosci</addtitle><date>2021-01-21</date><risdate>2021</risdate><volume>14</volume><spage>626154</spage><epage>626154</epage><pages>626154-626154</pages><artnum>626154</artnum><issn>1662-4548</issn><issn>1662-453X</issn><eissn>1662-453X</eissn><abstract>Frontotemporal dementia (FTD) and Alzheimer's disease (AD) have overlapping symptoms, and accurate differential diagnosis is important for targeted intervention and treatment. Previous studies suggest that the deep learning (DL) techniques have the potential to solve the differential diagnosis problem of FTD, AD and normal controls (NCs), but its performance is still unclear. In addition, existing DL-assisted diagnostic studies still rely on hypothesis-based expert-level preprocessing. On the one hand, it imposes high requirements on clinicians and data themselves; On the other hand, it hinders the backtracking of classification results to the original image data, resulting in the classification results cannot be interpreted intuitively. In the current study, a large cohort of 3D T1-weighted structural magnetic resonance imaging (MRI) volumes (n = 4,099) was collected from two publicly available databases, i.e., the ADNI and the NIFD. We trained a DL-based network directly based on raw T1 images to classify FTD, AD and corresponding NCs. And we evaluated the convergence speed, differential diagnosis ability, robustness and generalizability under nine scenarios. The proposed network yielded an accuracy of 91.83% based on the most common T1-weighted sequence [magnetization-prepared rapid acquisition with gradient echo (MPRAGE)]. The knowledge learned by the DL network through multiple classification tasks can also be used to solve subproblems, and the knowledge is generalizable and not limited to a specified dataset. Furthermore, we applied a gradient visualization algorithm based on guided backpropagation to calculate the contribution graph, which tells us intuitively why the DL-based networks make each decision. The regions making valuable contributions to FTD were more widespread in the right frontal white matter regions, while the left temporal, bilateral inferior frontal and parahippocampal regions were contributors to the classification of AD. Our results demonstrated that DL-based networks have the ability to solve the enigma of differential diagnosis of diseases without any hypothesis-based preprocessing. Moreover, they may mine the potential patterns that may be different from human clinicians, which may provide new insight into the understanding of FTD and AD.</abstract><cop>LAUSANNE</cop><pub>Frontiers Media Sa</pub><pmid>33551735</pmid><doi>10.3389/fnins.2020.626154</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9816-3611</orcidid><orcidid>https://orcid.org/0000-0003-4688-7586</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-4548 |
ispartof | Frontiers in neuroscience, 2021-01, Vol.14, p.626154-626154, Article 626154 |
issn | 1662-4548 1662-453X 1662-453X |
language | eng |
recordid | cdi_webofscience_primary_000614416500001CitationCount |
source | DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access |
subjects | Algorithms Alzheimer's disease Classification Clinical medicine convolutional neural network Decision making Deep learning Dementia Dementia disorders Design Differential diagnosis Frontotemporal dementia Hypotheses Life Sciences & Biomedicine Magnetic resonance imaging MRI Neurodegenerative diseases Neuroscience Neurosciences Neurosciences & Neurology Parahippocampal gyrus Patients Science & Technology Substantia alba visulization |
title | Deep Learning-Based Classification and Voxel-Based Visualization of Frontotemporal Dementia and Alzheimer's Disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T14%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-Based%20Classification%20and%20Voxel-Based%20Visualization%20of%20Frontotemporal%20Dementia%20and%20Alzheimer's%20Disease&rft.jtitle=Frontiers%20in%20neuroscience&rft.au=Hu,%20Jingjing&rft.aucorp=Frontotemporal%20Lobar%20Degeneration&rft.date=2021-01-21&rft.volume=14&rft.spage=626154&rft.epage=626154&rft.pages=626154-626154&rft.artnum=626154&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389/fnins.2020.626154&rft_dat=%3Cproquest_webof%3E2487433409%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479578084&rft_id=info:pmid/33551735&rft_doaj_id=oai_doaj_org_article_71f595221ee24a04a75b0fc4437e10fc&rfr_iscdi=true |