Essential role of autophagy in protecting neonatal haematopoietic stem cells from oxidative stress in a p62-independent manner
Autophagy is a cellular degradation system contributing to homeostasis of tissue stem cells including haematopoietic stem cells (HSCs). It plays pleiotropic roles in HSC characteristics throughout life, but its stage-specific roles in HSC self-renewal are unclear. To investigate the effects of Atg5...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2021-01, Vol.11 (1), p.1666-1666, Article 1666 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1666 |
---|---|
container_issue | 1 |
container_start_page | 1666 |
container_title | Scientific reports |
container_volume | 11 |
creator | Nomura, Naho Ito, Chiaki Ooshio, Takako Tadokoro, Yuko Kohno, Susumu Ueno, Masaya Kobayashi, Masahiko Kasahara, Atsuko Takase, Yusuke Kurayoshi, Kenta Si, Sha Takahashi, Chiaki Komatsu, Masaaki Yanagawa, Toru Hirao, Atsushi |
description | Autophagy is a cellular degradation system contributing to homeostasis of tissue stem cells including haematopoietic stem cells (HSCs). It plays pleiotropic roles in HSC characteristics throughout life, but its stage-specific roles in HSC self-renewal are unclear. To investigate the effects of
Atg5
deletion on stage-specific HSC functions, we compared the repopulating capacity of HSCs in
Atg5
f
/
f
;
Vavi-cre
mice from postnatal day (P) 0–7 weeks of age
.
Interestingly, Atg5 deficiency led to no remarkable abnormality in the HSC self-renewal capacity at P0, but significant defects at P7, followed by severe defects. Induction of
Atg5
deletion at P5 by tamoxifen administration to
Atg5
f
/
f
;
Rosa26-Cre-ER
T2
mice resulted in normal haematopoiesis, including the HSC population, until around 1 year, suggesting that Atg5 in the early neonatal period was critical for haematopoiesis in adults. Mitochondrial oxidative stress was increased by Atg5 loss in neonatal HSC/progenitor cells. Although p62 had accumulated in immature bone marrow cells of
Atg5
f
/
f
;
Vavi-cre
mice,
p62
deletion did not restore defective HSC functions, indicating that Atg5-dependent haematopoietic regulation in the developmental period was independent of p62. This study proposes a critical role of autophagy in HSC protection against harsh environments in the early neonatal stage, which is essential for healthy long-term haematopoiesis. |
doi_str_mv | 10.1038/s41598-021-81076-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9b2889ffac5248b398987d01765c8ab0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9b2889ffac5248b398987d01765c8ab0</doaj_id><sourcerecordid>2479037949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c650t-baf3d2e5c3d59126057b90411c8ca310d8a78eb658c7bf067b5b42fb5e40ba9d3</originalsourceid><addsrcrecordid>eNp9ks1u1DAURiMEolXpC7BAltiwCfg3sTdIqCpQqRIbWFvXjjPjUWIH21PRLvrseJpSWhZkkVi5x8e-V1_TvCb4PcFMfsicCCVbTEkrCe679uZZc0wxFy1llD5_tD5qTnPe4foIqjhRL5sjxnhHGRHHze15zi4UDxNKcXIojgj2JS5b2FwjH9CSYnG2-LBBwcUApYJbcDNUJnpXvEW5uBlZN00ZjSnOKP7yAxR_5WoluZwPGkBLR1sfBre4-goFzRCCS6-aFyNM2Z3ef0-aH5_Pv599bS-_fbk4-3TZ2k7g0hoY2UCdsGwQitAOi94ozAmx0gIjeJDQS2c6IW1vRtz1RhhORyMcxwbUwE6ai9U7RNjpJfkZ0rWO4PXdj5g2GlJtZnJaGSqlGkewgnJpmJJK9gMmfSesBIOr6-PqWvZmdoOt3SSYnkifVoLf6k280r0kHNO-Ct7dC1L8uXe56NnnwwChjnifNeW9wqxXXFX07T_oLu5TqKM6ULLrCGeyUnSlbIo5Jzc-XIZgfUiLXtOia1r0XVr0Td305nEbD1v-ZKMCbAVyLYWNS3_P_o_2N2HWzXI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478661438</pqid></control><display><type>article</type><title>Essential role of autophagy in protecting neonatal haematopoietic stem cells from oxidative stress in a p62-independent manner</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Nomura, Naho ; Ito, Chiaki ; Ooshio, Takako ; Tadokoro, Yuko ; Kohno, Susumu ; Ueno, Masaya ; Kobayashi, Masahiko ; Kasahara, Atsuko ; Takase, Yusuke ; Kurayoshi, Kenta ; Si, Sha ; Takahashi, Chiaki ; Komatsu, Masaaki ; Yanagawa, Toru ; Hirao, Atsushi</creator><creatorcontrib>Nomura, Naho ; Ito, Chiaki ; Ooshio, Takako ; Tadokoro, Yuko ; Kohno, Susumu ; Ueno, Masaya ; Kobayashi, Masahiko ; Kasahara, Atsuko ; Takase, Yusuke ; Kurayoshi, Kenta ; Si, Sha ; Takahashi, Chiaki ; Komatsu, Masaaki ; Yanagawa, Toru ; Hirao, Atsushi</creatorcontrib><description>Autophagy is a cellular degradation system contributing to homeostasis of tissue stem cells including haematopoietic stem cells (HSCs). It plays pleiotropic roles in HSC characteristics throughout life, but its stage-specific roles in HSC self-renewal are unclear. To investigate the effects of
Atg5
deletion on stage-specific HSC functions, we compared the repopulating capacity of HSCs in
Atg5
f
/
f
;
Vavi-cre
mice from postnatal day (P) 0–7 weeks of age
.
Interestingly, Atg5 deficiency led to no remarkable abnormality in the HSC self-renewal capacity at P0, but significant defects at P7, followed by severe defects. Induction of
Atg5
deletion at P5 by tamoxifen administration to
Atg5
f
/
f
;
Rosa26-Cre-ER
T2
mice resulted in normal haematopoiesis, including the HSC population, until around 1 year, suggesting that Atg5 in the early neonatal period was critical for haematopoiesis in adults. Mitochondrial oxidative stress was increased by Atg5 loss in neonatal HSC/progenitor cells. Although p62 had accumulated in immature bone marrow cells of
Atg5
f
/
f
;
Vavi-cre
mice,
p62
deletion did not restore defective HSC functions, indicating that Atg5-dependent haematopoietic regulation in the developmental period was independent of p62. This study proposes a critical role of autophagy in HSC protection against harsh environments in the early neonatal stage, which is essential for healthy long-term haematopoiesis.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-81076-z</identifier><identifier>PMID: 33462315</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/136/232 ; 631/532/1542 ; 631/80/39 ; Animals ; Animals, Newborn ; Autophagy ; Autophagy - physiology ; Autophagy-Related Protein 5 - genetics ; Autophagy-Related Protein 5 - metabolism ; Bone marrow ; Cell self-renewal ; Developmental stages ; Disease Models, Animal ; Female ; Harsh environments ; Hematopoietic stem cells ; Hematopoietic Stem Cells - cytology ; Hematopoietic Stem Cells - metabolism ; Hematopoietic Stem Cells - pathology ; Homeostasis ; Humanities and Social Sciences ; Male ; Mice ; Mice, Knockout ; Mitochondria ; multidisciplinary ; Neonates ; Oxidative stress ; Oxidative Stress - physiology ; Phagocytosis ; Progenitor cells ; Science ; Science (multidisciplinary) ; Sequestosome-1 Protein - metabolism ; Stem cell transplantation ; Stem cells ; Tamoxifen</subject><ispartof>Scientific reports, 2021-01, Vol.11 (1), p.1666-1666, Article 1666</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c650t-baf3d2e5c3d59126057b90411c8ca310d8a78eb658c7bf067b5b42fb5e40ba9d3</citedby><cites>FETCH-LOGICAL-c650t-baf3d2e5c3d59126057b90411c8ca310d8a78eb658c7bf067b5b42fb5e40ba9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814027/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814027/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33462315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nomura, Naho</creatorcontrib><creatorcontrib>Ito, Chiaki</creatorcontrib><creatorcontrib>Ooshio, Takako</creatorcontrib><creatorcontrib>Tadokoro, Yuko</creatorcontrib><creatorcontrib>Kohno, Susumu</creatorcontrib><creatorcontrib>Ueno, Masaya</creatorcontrib><creatorcontrib>Kobayashi, Masahiko</creatorcontrib><creatorcontrib>Kasahara, Atsuko</creatorcontrib><creatorcontrib>Takase, Yusuke</creatorcontrib><creatorcontrib>Kurayoshi, Kenta</creatorcontrib><creatorcontrib>Si, Sha</creatorcontrib><creatorcontrib>Takahashi, Chiaki</creatorcontrib><creatorcontrib>Komatsu, Masaaki</creatorcontrib><creatorcontrib>Yanagawa, Toru</creatorcontrib><creatorcontrib>Hirao, Atsushi</creatorcontrib><title>Essential role of autophagy in protecting neonatal haematopoietic stem cells from oxidative stress in a p62-independent manner</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Autophagy is a cellular degradation system contributing to homeostasis of tissue stem cells including haematopoietic stem cells (HSCs). It plays pleiotropic roles in HSC characteristics throughout life, but its stage-specific roles in HSC self-renewal are unclear. To investigate the effects of
Atg5
deletion on stage-specific HSC functions, we compared the repopulating capacity of HSCs in
Atg5
f
/
f
;
Vavi-cre
mice from postnatal day (P) 0–7 weeks of age
.
Interestingly, Atg5 deficiency led to no remarkable abnormality in the HSC self-renewal capacity at P0, but significant defects at P7, followed by severe defects. Induction of
Atg5
deletion at P5 by tamoxifen administration to
Atg5
f
/
f
;
Rosa26-Cre-ER
T2
mice resulted in normal haematopoiesis, including the HSC population, until around 1 year, suggesting that Atg5 in the early neonatal period was critical for haematopoiesis in adults. Mitochondrial oxidative stress was increased by Atg5 loss in neonatal HSC/progenitor cells. Although p62 had accumulated in immature bone marrow cells of
Atg5
f
/
f
;
Vavi-cre
mice,
p62
deletion did not restore defective HSC functions, indicating that Atg5-dependent haematopoietic regulation in the developmental period was independent of p62. This study proposes a critical role of autophagy in HSC protection against harsh environments in the early neonatal stage, which is essential for healthy long-term haematopoiesis.</description><subject>631/136/232</subject><subject>631/532/1542</subject><subject>631/80/39</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Autophagy</subject><subject>Autophagy - physiology</subject><subject>Autophagy-Related Protein 5 - genetics</subject><subject>Autophagy-Related Protein 5 - metabolism</subject><subject>Bone marrow</subject><subject>Cell self-renewal</subject><subject>Developmental stages</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Harsh environments</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Hematopoietic Stem Cells - pathology</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>multidisciplinary</subject><subject>Neonates</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - physiology</subject><subject>Phagocytosis</subject><subject>Progenitor cells</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sequestosome-1 Protein - metabolism</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Tamoxifen</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAURiMEolXpC7BAltiwCfg3sTdIqCpQqRIbWFvXjjPjUWIH21PRLvrseJpSWhZkkVi5x8e-V1_TvCb4PcFMfsicCCVbTEkrCe679uZZc0wxFy1llD5_tD5qTnPe4foIqjhRL5sjxnhHGRHHze15zi4UDxNKcXIojgj2JS5b2FwjH9CSYnG2-LBBwcUApYJbcDNUJnpXvEW5uBlZN00ZjSnOKP7yAxR_5WoluZwPGkBLR1sfBre4-goFzRCCS6-aFyNM2Z3ef0-aH5_Pv599bS-_fbk4-3TZ2k7g0hoY2UCdsGwQitAOi94ozAmx0gIjeJDQS2c6IW1vRtz1RhhORyMcxwbUwE6ai9U7RNjpJfkZ0rWO4PXdj5g2GlJtZnJaGSqlGkewgnJpmJJK9gMmfSesBIOr6-PqWvZmdoOt3SSYnkifVoLf6k280r0kHNO-Ct7dC1L8uXe56NnnwwChjnifNeW9wqxXXFX07T_oLu5TqKM6ULLrCGeyUnSlbIo5Jzc-XIZgfUiLXtOia1r0XVr0Td305nEbD1v-ZKMCbAVyLYWNS3_P_o_2N2HWzXI</recordid><startdate>20210118</startdate><enddate>20210118</enddate><creator>Nomura, Naho</creator><creator>Ito, Chiaki</creator><creator>Ooshio, Takako</creator><creator>Tadokoro, Yuko</creator><creator>Kohno, Susumu</creator><creator>Ueno, Masaya</creator><creator>Kobayashi, Masahiko</creator><creator>Kasahara, Atsuko</creator><creator>Takase, Yusuke</creator><creator>Kurayoshi, Kenta</creator><creator>Si, Sha</creator><creator>Takahashi, Chiaki</creator><creator>Komatsu, Masaaki</creator><creator>Yanagawa, Toru</creator><creator>Hirao, Atsushi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210118</creationdate><title>Essential role of autophagy in protecting neonatal haematopoietic stem cells from oxidative stress in a p62-independent manner</title><author>Nomura, Naho ; Ito, Chiaki ; Ooshio, Takako ; Tadokoro, Yuko ; Kohno, Susumu ; Ueno, Masaya ; Kobayashi, Masahiko ; Kasahara, Atsuko ; Takase, Yusuke ; Kurayoshi, Kenta ; Si, Sha ; Takahashi, Chiaki ; Komatsu, Masaaki ; Yanagawa, Toru ; Hirao, Atsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c650t-baf3d2e5c3d59126057b90411c8ca310d8a78eb658c7bf067b5b42fb5e40ba9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/136/232</topic><topic>631/532/1542</topic><topic>631/80/39</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Autophagy</topic><topic>Autophagy - physiology</topic><topic>Autophagy-Related Protein 5 - genetics</topic><topic>Autophagy-Related Protein 5 - metabolism</topic><topic>Bone marrow</topic><topic>Cell self-renewal</topic><topic>Developmental stages</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Harsh environments</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Hematopoietic Stem Cells - pathology</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>multidisciplinary</topic><topic>Neonates</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - physiology</topic><topic>Phagocytosis</topic><topic>Progenitor cells</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sequestosome-1 Protein - metabolism</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Tamoxifen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nomura, Naho</creatorcontrib><creatorcontrib>Ito, Chiaki</creatorcontrib><creatorcontrib>Ooshio, Takako</creatorcontrib><creatorcontrib>Tadokoro, Yuko</creatorcontrib><creatorcontrib>Kohno, Susumu</creatorcontrib><creatorcontrib>Ueno, Masaya</creatorcontrib><creatorcontrib>Kobayashi, Masahiko</creatorcontrib><creatorcontrib>Kasahara, Atsuko</creatorcontrib><creatorcontrib>Takase, Yusuke</creatorcontrib><creatorcontrib>Kurayoshi, Kenta</creatorcontrib><creatorcontrib>Si, Sha</creatorcontrib><creatorcontrib>Takahashi, Chiaki</creatorcontrib><creatorcontrib>Komatsu, Masaaki</creatorcontrib><creatorcontrib>Yanagawa, Toru</creatorcontrib><creatorcontrib>Hirao, Atsushi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nomura, Naho</au><au>Ito, Chiaki</au><au>Ooshio, Takako</au><au>Tadokoro, Yuko</au><au>Kohno, Susumu</au><au>Ueno, Masaya</au><au>Kobayashi, Masahiko</au><au>Kasahara, Atsuko</au><au>Takase, Yusuke</au><au>Kurayoshi, Kenta</au><au>Si, Sha</au><au>Takahashi, Chiaki</au><au>Komatsu, Masaaki</au><au>Yanagawa, Toru</au><au>Hirao, Atsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Essential role of autophagy in protecting neonatal haematopoietic stem cells from oxidative stress in a p62-independent manner</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2021-01-18</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>1666</spage><epage>1666</epage><pages>1666-1666</pages><artnum>1666</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Autophagy is a cellular degradation system contributing to homeostasis of tissue stem cells including haematopoietic stem cells (HSCs). It plays pleiotropic roles in HSC characteristics throughout life, but its stage-specific roles in HSC self-renewal are unclear. To investigate the effects of
Atg5
deletion on stage-specific HSC functions, we compared the repopulating capacity of HSCs in
Atg5
f
/
f
;
Vavi-cre
mice from postnatal day (P) 0–7 weeks of age
.
Interestingly, Atg5 deficiency led to no remarkable abnormality in the HSC self-renewal capacity at P0, but significant defects at P7, followed by severe defects. Induction of
Atg5
deletion at P5 by tamoxifen administration to
Atg5
f
/
f
;
Rosa26-Cre-ER
T2
mice resulted in normal haematopoiesis, including the HSC population, until around 1 year, suggesting that Atg5 in the early neonatal period was critical for haematopoiesis in adults. Mitochondrial oxidative stress was increased by Atg5 loss in neonatal HSC/progenitor cells. Although p62 had accumulated in immature bone marrow cells of
Atg5
f
/
f
;
Vavi-cre
mice,
p62
deletion did not restore defective HSC functions, indicating that Atg5-dependent haematopoietic regulation in the developmental period was independent of p62. This study proposes a critical role of autophagy in HSC protection against harsh environments in the early neonatal stage, which is essential for healthy long-term haematopoiesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33462315</pmid><doi>10.1038/s41598-021-81076-z</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2021-01, Vol.11 (1), p.1666-1666, Article 1666 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9b2889ffac5248b398987d01765c8ab0 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 631/136/232 631/532/1542 631/80/39 Animals Animals, Newborn Autophagy Autophagy - physiology Autophagy-Related Protein 5 - genetics Autophagy-Related Protein 5 - metabolism Bone marrow Cell self-renewal Developmental stages Disease Models, Animal Female Harsh environments Hematopoietic stem cells Hematopoietic Stem Cells - cytology Hematopoietic Stem Cells - metabolism Hematopoietic Stem Cells - pathology Homeostasis Humanities and Social Sciences Male Mice Mice, Knockout Mitochondria multidisciplinary Neonates Oxidative stress Oxidative Stress - physiology Phagocytosis Progenitor cells Science Science (multidisciplinary) Sequestosome-1 Protein - metabolism Stem cell transplantation Stem cells Tamoxifen |
title | Essential role of autophagy in protecting neonatal haematopoietic stem cells from oxidative stress in a p62-independent manner |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Essential%20role%20of%20autophagy%20in%20protecting%20neonatal%20haematopoietic%20stem%20cells%20from%20oxidative%20stress%20in%20a%20p62-independent%20manner&rft.jtitle=Scientific%20reports&rft.au=Nomura,%20Naho&rft.date=2021-01-18&rft.volume=11&rft.issue=1&rft.spage=1666&rft.epage=1666&rft.pages=1666-1666&rft.artnum=1666&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-81076-z&rft_dat=%3Cproquest_doaj_%3E2479037949%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478661438&rft_id=info:pmid/33462315&rft_doaj_id=oai_doaj_org_article_9b2889ffac5248b398987d01765c8ab0&rfr_iscdi=true |