Non-uniform strain field reconstruction of FBG using an adaptive Nelder–Mead algorithm
This paper presents an adaptive Nelder–Mead algorithm to inversely reconstruct the non-uniform strain field from the reflected intensity spectrum of the fiber grating sensor. In this algorithm, the standard operating parameters are modified to adapt to the variable strain profiles, and an improved t...
Gespeichert in:
Veröffentlicht in: | Optics communications 2021-04, Vol.484, p.126689, Article 126689 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 126689 |
container_title | Optics communications |
container_volume | 484 |
creator | Bai, Yufang Zeng, Jie Huang, Jiwei Cheng, Zhuming Zhao, Qidi Liang, Dakai |
description | This paper presents an adaptive Nelder–Mead algorithm to inversely reconstruct the non-uniform strain field from the reflected intensity spectrum of the fiber grating sensor. In this algorithm, the standard operating parameters are modified to adapt to the variable strain profiles, and an improved transfer matrix method is adopted to rapidly calculate the reflected intensity spectrum with a high precision. Thus, the performance of high-dimensional optimization involved in the reconstruction of complex strain distributions is significantly improved. Several numerical examples firstly demonstrate the advantages of the proposed algorithm compared with the standard Nelder–Mead algorithm. Then, experimental investigations are conducted on aluminum alloy plates with central circular hole under tensile and bending loading. A penalty function is added to the objective function to meet the constraints of the optimization variables under experimental conditions. The experimental results are compared with the finite element analysis results, which verifies the effectiveness and accuracy of the proposed algorithm. Finally, we provide some insights about the strain distribution and the resulting spectral distortion. Based on the measured spectrum, a spectral feature parameter (slope of the deflection–intensity ratio) is proposed as an indicator to reveal the size of the hole.
•Fiber grating sensor is used to reconstruct the non-uniform strain fields.•An adaptive Nelder–Mead algorithm is proposed for high-dimensional optimizations.•The proposed method achieves good performance in accuracy and computational cost.•A spectral feature parameter is proposed to characterize the plate with a hole. |
doi_str_mv | 10.1016/j.optcom.2020.126689 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000612149300008CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003040182031107X</els_id><sourcerecordid>S003040182031107X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-735cc3821b26e7242e9efb9c6e35856dcb9fa0591cb77d2a25e5825947967d583</originalsourceid><addsrcrecordid>eNqNkM1KAzEURoMoWKtv4CJ7mZqfmUxmI2ixVah1o-AuZDJ3akqblEyquPMdfEOfxJQpLsXVvXx853I5CJ1TMqKEisvlyG-i8esRIyxFTAhZHaABlSXPCKfkEA0I4STLCZXH6KTrloQQmnM5QC9z77Kts60Pa9zFoK3DrYVVgwMY71KyNdF6h32LJzdTvO2sW2DtsG70Jto3wPNUhvD9-fUAusF6tfDBxtf1KTpq9aqDs_0coufJ7dP4Lps9Tu_H17PMcCJiVvLCGC4ZrZmAkuUMKmjrygjghSxEY-qq1aSoqKnLsmGaFVBIVlR5WYmyKSQfory_a4LvugCt2gS71uFDUaJ2dtRS9XbUzo7q7SRM9tg71L7tjAVn4BdNegRlNK942ogc26h3EsZ-62JCL_6PpvZV34Yk4c1CUHuisclwVI23f3_6A4XBkbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non-uniform strain field reconstruction of FBG using an adaptive Nelder–Mead algorithm</title><source>Elsevier ScienceDirect Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Bai, Yufang ; Zeng, Jie ; Huang, Jiwei ; Cheng, Zhuming ; Zhao, Qidi ; Liang, Dakai</creator><creatorcontrib>Bai, Yufang ; Zeng, Jie ; Huang, Jiwei ; Cheng, Zhuming ; Zhao, Qidi ; Liang, Dakai</creatorcontrib><description>This paper presents an adaptive Nelder–Mead algorithm to inversely reconstruct the non-uniform strain field from the reflected intensity spectrum of the fiber grating sensor. In this algorithm, the standard operating parameters are modified to adapt to the variable strain profiles, and an improved transfer matrix method is adopted to rapidly calculate the reflected intensity spectrum with a high precision. Thus, the performance of high-dimensional optimization involved in the reconstruction of complex strain distributions is significantly improved. Several numerical examples firstly demonstrate the advantages of the proposed algorithm compared with the standard Nelder–Mead algorithm. Then, experimental investigations are conducted on aluminum alloy plates with central circular hole under tensile and bending loading. A penalty function is added to the objective function to meet the constraints of the optimization variables under experimental conditions. The experimental results are compared with the finite element analysis results, which verifies the effectiveness and accuracy of the proposed algorithm. Finally, we provide some insights about the strain distribution and the resulting spectral distortion. Based on the measured spectrum, a spectral feature parameter (slope of the deflection–intensity ratio) is proposed as an indicator to reveal the size of the hole.
•Fiber grating sensor is used to reconstruct the non-uniform strain fields.•An adaptive Nelder–Mead algorithm is proposed for high-dimensional optimizations.•The proposed method achieves good performance in accuracy and computational cost.•A spectral feature parameter is proposed to characterize the plate with a hole.</description><identifier>ISSN: 0030-4018</identifier><identifier>EISSN: 1873-0310</identifier><identifier>DOI: 10.1016/j.optcom.2020.126689</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Adaptive Nelder–Mead algorithm ; Deflection–intensity ratio ; Finite element method ; Non-uniform strain distribution ; Optics ; Penalty function ; Physical Sciences ; Science & Technology ; Spectral analysis</subject><ispartof>Optics communications, 2021-04, Vol.484, p.126689, Article 126689</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000612149300008</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c306t-735cc3821b26e7242e9efb9c6e35856dcb9fa0591cb77d2a25e5825947967d583</citedby><cites>FETCH-LOGICAL-c306t-735cc3821b26e7242e9efb9c6e35856dcb9fa0591cb77d2a25e5825947967d583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.optcom.2020.126689$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000</link.rule.ids></links><search><creatorcontrib>Bai, Yufang</creatorcontrib><creatorcontrib>Zeng, Jie</creatorcontrib><creatorcontrib>Huang, Jiwei</creatorcontrib><creatorcontrib>Cheng, Zhuming</creatorcontrib><creatorcontrib>Zhao, Qidi</creatorcontrib><creatorcontrib>Liang, Dakai</creatorcontrib><title>Non-uniform strain field reconstruction of FBG using an adaptive Nelder–Mead algorithm</title><title>Optics communications</title><addtitle>OPT COMMUN</addtitle><description>This paper presents an adaptive Nelder–Mead algorithm to inversely reconstruct the non-uniform strain field from the reflected intensity spectrum of the fiber grating sensor. In this algorithm, the standard operating parameters are modified to adapt to the variable strain profiles, and an improved transfer matrix method is adopted to rapidly calculate the reflected intensity spectrum with a high precision. Thus, the performance of high-dimensional optimization involved in the reconstruction of complex strain distributions is significantly improved. Several numerical examples firstly demonstrate the advantages of the proposed algorithm compared with the standard Nelder–Mead algorithm. Then, experimental investigations are conducted on aluminum alloy plates with central circular hole under tensile and bending loading. A penalty function is added to the objective function to meet the constraints of the optimization variables under experimental conditions. The experimental results are compared with the finite element analysis results, which verifies the effectiveness and accuracy of the proposed algorithm. Finally, we provide some insights about the strain distribution and the resulting spectral distortion. Based on the measured spectrum, a spectral feature parameter (slope of the deflection–intensity ratio) is proposed as an indicator to reveal the size of the hole.
•Fiber grating sensor is used to reconstruct the non-uniform strain fields.•An adaptive Nelder–Mead algorithm is proposed for high-dimensional optimizations.•The proposed method achieves good performance in accuracy and computational cost.•A spectral feature parameter is proposed to characterize the plate with a hole.</description><subject>Adaptive Nelder–Mead algorithm</subject><subject>Deflection–intensity ratio</subject><subject>Finite element method</subject><subject>Non-uniform strain distribution</subject><subject>Optics</subject><subject>Penalty function</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><subject>Spectral analysis</subject><issn>0030-4018</issn><issn>1873-0310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM1KAzEURoMoWKtv4CJ7mZqfmUxmI2ixVah1o-AuZDJ3akqblEyquPMdfEOfxJQpLsXVvXx853I5CJ1TMqKEisvlyG-i8esRIyxFTAhZHaABlSXPCKfkEA0I4STLCZXH6KTrloQQmnM5QC9z77Kts60Pa9zFoK3DrYVVgwMY71KyNdF6h32LJzdTvO2sW2DtsG70Jto3wPNUhvD9-fUAusF6tfDBxtf1KTpq9aqDs_0coufJ7dP4Lps9Tu_H17PMcCJiVvLCGC4ZrZmAkuUMKmjrygjghSxEY-qq1aSoqKnLsmGaFVBIVlR5WYmyKSQfory_a4LvugCt2gS71uFDUaJ2dtRS9XbUzo7q7SRM9tg71L7tjAVn4BdNegRlNK942ogc26h3EsZ-62JCL_6PpvZV34Yk4c1CUHuisclwVI23f3_6A4XBkbw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Bai, Yufang</creator><creator>Zeng, Jie</creator><creator>Huang, Jiwei</creator><creator>Cheng, Zhuming</creator><creator>Zhao, Qidi</creator><creator>Liang, Dakai</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>Non-uniform strain field reconstruction of FBG using an adaptive Nelder–Mead algorithm</title><author>Bai, Yufang ; Zeng, Jie ; Huang, Jiwei ; Cheng, Zhuming ; Zhao, Qidi ; Liang, Dakai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-735cc3821b26e7242e9efb9c6e35856dcb9fa0591cb77d2a25e5825947967d583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive Nelder–Mead algorithm</topic><topic>Deflection–intensity ratio</topic><topic>Finite element method</topic><topic>Non-uniform strain distribution</topic><topic>Optics</topic><topic>Penalty function</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><topic>Spectral analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Yufang</creatorcontrib><creatorcontrib>Zeng, Jie</creatorcontrib><creatorcontrib>Huang, Jiwei</creatorcontrib><creatorcontrib>Cheng, Zhuming</creatorcontrib><creatorcontrib>Zhao, Qidi</creatorcontrib><creatorcontrib>Liang, Dakai</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Optics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Yufang</au><au>Zeng, Jie</au><au>Huang, Jiwei</au><au>Cheng, Zhuming</au><au>Zhao, Qidi</au><au>Liang, Dakai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-uniform strain field reconstruction of FBG using an adaptive Nelder–Mead algorithm</atitle><jtitle>Optics communications</jtitle><stitle>OPT COMMUN</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>484</volume><spage>126689</spage><pages>126689-</pages><artnum>126689</artnum><issn>0030-4018</issn><eissn>1873-0310</eissn><abstract>This paper presents an adaptive Nelder–Mead algorithm to inversely reconstruct the non-uniform strain field from the reflected intensity spectrum of the fiber grating sensor. In this algorithm, the standard operating parameters are modified to adapt to the variable strain profiles, and an improved transfer matrix method is adopted to rapidly calculate the reflected intensity spectrum with a high precision. Thus, the performance of high-dimensional optimization involved in the reconstruction of complex strain distributions is significantly improved. Several numerical examples firstly demonstrate the advantages of the proposed algorithm compared with the standard Nelder–Mead algorithm. Then, experimental investigations are conducted on aluminum alloy plates with central circular hole under tensile and bending loading. A penalty function is added to the objective function to meet the constraints of the optimization variables under experimental conditions. The experimental results are compared with the finite element analysis results, which verifies the effectiveness and accuracy of the proposed algorithm. Finally, we provide some insights about the strain distribution and the resulting spectral distortion. Based on the measured spectrum, a spectral feature parameter (slope of the deflection–intensity ratio) is proposed as an indicator to reveal the size of the hole.
•Fiber grating sensor is used to reconstruct the non-uniform strain fields.•An adaptive Nelder–Mead algorithm is proposed for high-dimensional optimizations.•The proposed method achieves good performance in accuracy and computational cost.•A spectral feature parameter is proposed to characterize the plate with a hole.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><doi>10.1016/j.optcom.2020.126689</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-4018 |
ispartof | Optics communications, 2021-04, Vol.484, p.126689, Article 126689 |
issn | 0030-4018 1873-0310 |
language | eng |
recordid | cdi_webofscience_primary_000612149300008CitationCount |
source | Elsevier ScienceDirect Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Adaptive Nelder–Mead algorithm Deflection–intensity ratio Finite element method Non-uniform strain distribution Optics Penalty function Physical Sciences Science & Technology Spectral analysis |
title | Non-uniform strain field reconstruction of FBG using an adaptive Nelder–Mead algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A36%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-uniform%20strain%20field%20reconstruction%20of%20FBG%20using%20an%20adaptive%20Nelder%E2%80%93Mead%20algorithm&rft.jtitle=Optics%20communications&rft.au=Bai,%20Yufang&rft.date=2021-04-01&rft.volume=484&rft.spage=126689&rft.pages=126689-&rft.artnum=126689&rft.issn=0030-4018&rft.eissn=1873-0310&rft_id=info:doi/10.1016/j.optcom.2020.126689&rft_dat=%3Celsevier_webof%3ES003040182031107X%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S003040182031107X&rfr_iscdi=true |