Non-uniform strain field reconstruction of FBG using an adaptive Nelder–Mead algorithm

This paper presents an adaptive Nelder–Mead algorithm to inversely reconstruct the non-uniform strain field from the reflected intensity spectrum of the fiber grating sensor. In this algorithm, the standard operating parameters are modified to adapt to the variable strain profiles, and an improved t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics communications 2021-04, Vol.484, p.126689, Article 126689
Hauptverfasser: Bai, Yufang, Zeng, Jie, Huang, Jiwei, Cheng, Zhuming, Zhao, Qidi, Liang, Dakai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 126689
container_title Optics communications
container_volume 484
creator Bai, Yufang
Zeng, Jie
Huang, Jiwei
Cheng, Zhuming
Zhao, Qidi
Liang, Dakai
description This paper presents an adaptive Nelder–Mead algorithm to inversely reconstruct the non-uniform strain field from the reflected intensity spectrum of the fiber grating sensor. In this algorithm, the standard operating parameters are modified to adapt to the variable strain profiles, and an improved transfer matrix method is adopted to rapidly calculate the reflected intensity spectrum with a high precision. Thus, the performance of high-dimensional optimization involved in the reconstruction of complex strain distributions is significantly improved. Several numerical examples firstly demonstrate the advantages of the proposed algorithm compared with the standard Nelder–Mead algorithm. Then, experimental investigations are conducted on aluminum alloy plates with central circular hole under tensile and bending loading. A penalty function is added to the objective function to meet the constraints of the optimization variables under experimental conditions. The experimental results are compared with the finite element analysis results, which verifies the effectiveness and accuracy of the proposed algorithm. Finally, we provide some insights about the strain distribution and the resulting spectral distortion. Based on the measured spectrum, a spectral feature parameter (slope of the deflection–intensity ratio) is proposed as an indicator to reveal the size of the hole. •Fiber grating sensor is used to reconstruct the non-uniform strain fields.•An adaptive Nelder–Mead algorithm is proposed for high-dimensional optimizations.•The proposed method achieves good performance in accuracy and computational cost.•A spectral feature parameter is proposed to characterize the plate with a hole.
doi_str_mv 10.1016/j.optcom.2020.126689
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000612149300008CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003040182031107X</els_id><sourcerecordid>S003040182031107X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-735cc3821b26e7242e9efb9c6e35856dcb9fa0591cb77d2a25e5825947967d583</originalsourceid><addsrcrecordid>eNqNkM1KAzEURoMoWKtv4CJ7mZqfmUxmI2ixVah1o-AuZDJ3akqblEyquPMdfEOfxJQpLsXVvXx853I5CJ1TMqKEisvlyG-i8esRIyxFTAhZHaABlSXPCKfkEA0I4STLCZXH6KTrloQQmnM5QC9z77Kts60Pa9zFoK3DrYVVgwMY71KyNdF6h32LJzdTvO2sW2DtsG70Jto3wPNUhvD9-fUAusF6tfDBxtf1KTpq9aqDs_0coufJ7dP4Lps9Tu_H17PMcCJiVvLCGC4ZrZmAkuUMKmjrygjghSxEY-qq1aSoqKnLsmGaFVBIVlR5WYmyKSQfory_a4LvugCt2gS71uFDUaJ2dtRS9XbUzo7q7SRM9tg71L7tjAVn4BdNegRlNK942ogc26h3EsZ-62JCL_6PpvZV34Yk4c1CUHuisclwVI23f3_6A4XBkbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non-uniform strain field reconstruction of FBG using an adaptive Nelder–Mead algorithm</title><source>Elsevier ScienceDirect Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Bai, Yufang ; Zeng, Jie ; Huang, Jiwei ; Cheng, Zhuming ; Zhao, Qidi ; Liang, Dakai</creator><creatorcontrib>Bai, Yufang ; Zeng, Jie ; Huang, Jiwei ; Cheng, Zhuming ; Zhao, Qidi ; Liang, Dakai</creatorcontrib><description>This paper presents an adaptive Nelder–Mead algorithm to inversely reconstruct the non-uniform strain field from the reflected intensity spectrum of the fiber grating sensor. In this algorithm, the standard operating parameters are modified to adapt to the variable strain profiles, and an improved transfer matrix method is adopted to rapidly calculate the reflected intensity spectrum with a high precision. Thus, the performance of high-dimensional optimization involved in the reconstruction of complex strain distributions is significantly improved. Several numerical examples firstly demonstrate the advantages of the proposed algorithm compared with the standard Nelder–Mead algorithm. Then, experimental investigations are conducted on aluminum alloy plates with central circular hole under tensile and bending loading. A penalty function is added to the objective function to meet the constraints of the optimization variables under experimental conditions. The experimental results are compared with the finite element analysis results, which verifies the effectiveness and accuracy of the proposed algorithm. Finally, we provide some insights about the strain distribution and the resulting spectral distortion. Based on the measured spectrum, a spectral feature parameter (slope of the deflection–intensity ratio) is proposed as an indicator to reveal the size of the hole. •Fiber grating sensor is used to reconstruct the non-uniform strain fields.•An adaptive Nelder–Mead algorithm is proposed for high-dimensional optimizations.•The proposed method achieves good performance in accuracy and computational cost.•A spectral feature parameter is proposed to characterize the plate with a hole.</description><identifier>ISSN: 0030-4018</identifier><identifier>EISSN: 1873-0310</identifier><identifier>DOI: 10.1016/j.optcom.2020.126689</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Adaptive Nelder–Mead algorithm ; Deflection–intensity ratio ; Finite element method ; Non-uniform strain distribution ; Optics ; Penalty function ; Physical Sciences ; Science &amp; Technology ; Spectral analysis</subject><ispartof>Optics communications, 2021-04, Vol.484, p.126689, Article 126689</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000612149300008</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c306t-735cc3821b26e7242e9efb9c6e35856dcb9fa0591cb77d2a25e5825947967d583</citedby><cites>FETCH-LOGICAL-c306t-735cc3821b26e7242e9efb9c6e35856dcb9fa0591cb77d2a25e5825947967d583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.optcom.2020.126689$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000</link.rule.ids></links><search><creatorcontrib>Bai, Yufang</creatorcontrib><creatorcontrib>Zeng, Jie</creatorcontrib><creatorcontrib>Huang, Jiwei</creatorcontrib><creatorcontrib>Cheng, Zhuming</creatorcontrib><creatorcontrib>Zhao, Qidi</creatorcontrib><creatorcontrib>Liang, Dakai</creatorcontrib><title>Non-uniform strain field reconstruction of FBG using an adaptive Nelder–Mead algorithm</title><title>Optics communications</title><addtitle>OPT COMMUN</addtitle><description>This paper presents an adaptive Nelder–Mead algorithm to inversely reconstruct the non-uniform strain field from the reflected intensity spectrum of the fiber grating sensor. In this algorithm, the standard operating parameters are modified to adapt to the variable strain profiles, and an improved transfer matrix method is adopted to rapidly calculate the reflected intensity spectrum with a high precision. Thus, the performance of high-dimensional optimization involved in the reconstruction of complex strain distributions is significantly improved. Several numerical examples firstly demonstrate the advantages of the proposed algorithm compared with the standard Nelder–Mead algorithm. Then, experimental investigations are conducted on aluminum alloy plates with central circular hole under tensile and bending loading. A penalty function is added to the objective function to meet the constraints of the optimization variables under experimental conditions. The experimental results are compared with the finite element analysis results, which verifies the effectiveness and accuracy of the proposed algorithm. Finally, we provide some insights about the strain distribution and the resulting spectral distortion. Based on the measured spectrum, a spectral feature parameter (slope of the deflection–intensity ratio) is proposed as an indicator to reveal the size of the hole. •Fiber grating sensor is used to reconstruct the non-uniform strain fields.•An adaptive Nelder–Mead algorithm is proposed for high-dimensional optimizations.•The proposed method achieves good performance in accuracy and computational cost.•A spectral feature parameter is proposed to characterize the plate with a hole.</description><subject>Adaptive Nelder–Mead algorithm</subject><subject>Deflection–intensity ratio</subject><subject>Finite element method</subject><subject>Non-uniform strain distribution</subject><subject>Optics</subject><subject>Penalty function</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Spectral analysis</subject><issn>0030-4018</issn><issn>1873-0310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM1KAzEURoMoWKtv4CJ7mZqfmUxmI2ixVah1o-AuZDJ3akqblEyquPMdfEOfxJQpLsXVvXx853I5CJ1TMqKEisvlyG-i8esRIyxFTAhZHaABlSXPCKfkEA0I4STLCZXH6KTrloQQmnM5QC9z77Kts60Pa9zFoK3DrYVVgwMY71KyNdF6h32LJzdTvO2sW2DtsG70Jto3wPNUhvD9-fUAusF6tfDBxtf1KTpq9aqDs_0coufJ7dP4Lps9Tu_H17PMcCJiVvLCGC4ZrZmAkuUMKmjrygjghSxEY-qq1aSoqKnLsmGaFVBIVlR5WYmyKSQfory_a4LvugCt2gS71uFDUaJ2dtRS9XbUzo7q7SRM9tg71L7tjAVn4BdNegRlNK942ogc26h3EsZ-62JCL_6PpvZV34Yk4c1CUHuisclwVI23f3_6A4XBkbw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Bai, Yufang</creator><creator>Zeng, Jie</creator><creator>Huang, Jiwei</creator><creator>Cheng, Zhuming</creator><creator>Zhao, Qidi</creator><creator>Liang, Dakai</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>Non-uniform strain field reconstruction of FBG using an adaptive Nelder–Mead algorithm</title><author>Bai, Yufang ; Zeng, Jie ; Huang, Jiwei ; Cheng, Zhuming ; Zhao, Qidi ; Liang, Dakai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-735cc3821b26e7242e9efb9c6e35856dcb9fa0591cb77d2a25e5825947967d583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive Nelder–Mead algorithm</topic><topic>Deflection–intensity ratio</topic><topic>Finite element method</topic><topic>Non-uniform strain distribution</topic><topic>Optics</topic><topic>Penalty function</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Spectral analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Yufang</creatorcontrib><creatorcontrib>Zeng, Jie</creatorcontrib><creatorcontrib>Huang, Jiwei</creatorcontrib><creatorcontrib>Cheng, Zhuming</creatorcontrib><creatorcontrib>Zhao, Qidi</creatorcontrib><creatorcontrib>Liang, Dakai</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Optics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Yufang</au><au>Zeng, Jie</au><au>Huang, Jiwei</au><au>Cheng, Zhuming</au><au>Zhao, Qidi</au><au>Liang, Dakai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-uniform strain field reconstruction of FBG using an adaptive Nelder–Mead algorithm</atitle><jtitle>Optics communications</jtitle><stitle>OPT COMMUN</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>484</volume><spage>126689</spage><pages>126689-</pages><artnum>126689</artnum><issn>0030-4018</issn><eissn>1873-0310</eissn><abstract>This paper presents an adaptive Nelder–Mead algorithm to inversely reconstruct the non-uniform strain field from the reflected intensity spectrum of the fiber grating sensor. In this algorithm, the standard operating parameters are modified to adapt to the variable strain profiles, and an improved transfer matrix method is adopted to rapidly calculate the reflected intensity spectrum with a high precision. Thus, the performance of high-dimensional optimization involved in the reconstruction of complex strain distributions is significantly improved. Several numerical examples firstly demonstrate the advantages of the proposed algorithm compared with the standard Nelder–Mead algorithm. Then, experimental investigations are conducted on aluminum alloy plates with central circular hole under tensile and bending loading. A penalty function is added to the objective function to meet the constraints of the optimization variables under experimental conditions. The experimental results are compared with the finite element analysis results, which verifies the effectiveness and accuracy of the proposed algorithm. Finally, we provide some insights about the strain distribution and the resulting spectral distortion. Based on the measured spectrum, a spectral feature parameter (slope of the deflection–intensity ratio) is proposed as an indicator to reveal the size of the hole. •Fiber grating sensor is used to reconstruct the non-uniform strain fields.•An adaptive Nelder–Mead algorithm is proposed for high-dimensional optimizations.•The proposed method achieves good performance in accuracy and computational cost.•A spectral feature parameter is proposed to characterize the plate with a hole.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><doi>10.1016/j.optcom.2020.126689</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-4018
ispartof Optics communications, 2021-04, Vol.484, p.126689, Article 126689
issn 0030-4018
1873-0310
language eng
recordid cdi_webofscience_primary_000612149300008CitationCount
source Elsevier ScienceDirect Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Adaptive Nelder–Mead algorithm
Deflection–intensity ratio
Finite element method
Non-uniform strain distribution
Optics
Penalty function
Physical Sciences
Science & Technology
Spectral analysis
title Non-uniform strain field reconstruction of FBG using an adaptive Nelder–Mead algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A36%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-uniform%20strain%20field%20reconstruction%20of%20FBG%20using%20an%20adaptive%20Nelder%E2%80%93Mead%20algorithm&rft.jtitle=Optics%20communications&rft.au=Bai,%20Yufang&rft.date=2021-04-01&rft.volume=484&rft.spage=126689&rft.pages=126689-&rft.artnum=126689&rft.issn=0030-4018&rft.eissn=1873-0310&rft_id=info:doi/10.1016/j.optcom.2020.126689&rft_dat=%3Celsevier_webof%3ES003040182031107X%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S003040182031107X&rfr_iscdi=true