Brain Temperature Measured by Magnetic Resonance Spectroscopy to Predict Clinical Outcome in Patients with Infarction
Acute ischemic stroke is characterized by dynamic changes in metabolism and hemodynamics, which can affect brain temperature. We used proton magnetic resonance (MR) spectroscopy under everyday clinical settings to measure brain temperature in seven patients with internal carotid artery occlusion to...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2021-01, Vol.21 (2), p.490, Article 490 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 490 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 21 |
creator | Ishida, Tomohisa Inoue, Takashi Inoue, Tomoo Endo, Toshiki Fujimura, Miki Niizuma, Kuniyasu Endo, Hidenori Tominaga, Teiji |
description | Acute ischemic stroke is characterized by dynamic changes in metabolism and hemodynamics, which can affect brain temperature. We used proton magnetic resonance (MR) spectroscopy under everyday clinical settings to measure brain temperature in seven patients with internal carotid artery occlusion to explore the relationship between lesion temperature and clinical course. Regions of interest were selected in the infarct area and the corresponding contralateral region. Single-voxel MR spectroscopy was performed using the following parameters: 2000-ms repetition time, 144-ms echo time, and 128 excitations. Brain temperature was calculated from the chemical shift between water and N-acetyl aspartate, choline-containing compounds, or creatine phosphate. Within 48 h of onset, compared with the contralateral region temperature, brain temperature in the ischemic lesion was lower in five patients and higher in two patients. Severe brain swelling occurred subsequently in three of the five patients with lower lesion temperatures, but in neither of the two patients with higher lesion temperatures. The use of proton MR spectroscopy to measure brain temperature in patients with internal carotid artery occlusion may predict brain swelling and subsequent motor deficits, allowing for more effective early surgical intervention. Moreover, our methodology allows for MR spectroscopy to be used in everyday clinical settings. |
doi_str_mv | 10.3390/s21020490 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000611706900001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_949cb9c35d814065879a58cedba27cfa</doaj_id><sourcerecordid>2478305440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-b483299a8845d760e3c0f1da4785daf14e2eb975db2c5e05fcd266ab970a7bf23</originalsourceid><addsrcrecordid>eNqNkk1vEzEQhlcIREvhwB9AlriAUMBfu7YvSBDxEalVKyjn1ax3NnW0sVPbS5V_j9OUqOXEaUbjZ17N65mqesnoeyEM_ZA4o5xKQx9Vx0xyOdOc08f38qPqWUorSrkQQj-tjoSQsm6oOK6mzxGcJ5e43mCEPEUkZwipxJ50W3IGS4_ZWfIDU_DgLZKfG7Q5hmTDZktyIBcFdTaT-ei8szCS8ynbsEZSZC8gO_Q5kRuXr8jCDxBtdsE_r54MMCZ8cRdPql9fv1zOv89Oz78t5p9OZ1Y2Js86qQU3BrSWda8aisLSgfUgla57GJhEjp1Rdd9xWyOtB9vzpoFSoqC6gYuTarHX7QOs2k10a4jbNoBrbwshLluIxd6IrZHGdsaKutdM0qbWykCtLfYdcGUHKFof91qbqVtjb4uvCOMD0Ycv3l21y_C7VZorxVUReHMnEMP1hCm3a5csjiN4DFNq-c6WYVqKgr7-B12FKfryVbeUoLWUtFBv95Qt60gRh8MwjLa7w2gPh1HYV_enP5B_L6EAeg_cYBeGZMveLB4wSmnDmKKNKRllc5dht8d5mHwure_-v1X8AQ5s1T8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478305440</pqid></control><display><type>article</type><title>Brain Temperature Measured by Magnetic Resonance Spectroscopy to Predict Clinical Outcome in Patients with Infarction</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ishida, Tomohisa ; Inoue, Takashi ; Inoue, Tomoo ; Endo, Toshiki ; Fujimura, Miki ; Niizuma, Kuniyasu ; Endo, Hidenori ; Tominaga, Teiji</creator><creatorcontrib>Ishida, Tomohisa ; Inoue, Takashi ; Inoue, Tomoo ; Endo, Toshiki ; Fujimura, Miki ; Niizuma, Kuniyasu ; Endo, Hidenori ; Tominaga, Teiji</creatorcontrib><description>Acute ischemic stroke is characterized by dynamic changes in metabolism and hemodynamics, which can affect brain temperature. We used proton magnetic resonance (MR) spectroscopy under everyday clinical settings to measure brain temperature in seven patients with internal carotid artery occlusion to explore the relationship between lesion temperature and clinical course. Regions of interest were selected in the infarct area and the corresponding contralateral region. Single-voxel MR spectroscopy was performed using the following parameters: 2000-ms repetition time, 144-ms echo time, and 128 excitations. Brain temperature was calculated from the chemical shift between water and N-acetyl aspartate, choline-containing compounds, or creatine phosphate. Within 48 h of onset, compared with the contralateral region temperature, brain temperature in the ischemic lesion was lower in five patients and higher in two patients. Severe brain swelling occurred subsequently in three of the five patients with lower lesion temperatures, but in neither of the two patients with higher lesion temperatures. The use of proton MR spectroscopy to measure brain temperature in patients with internal carotid artery occlusion may predict brain swelling and subsequent motor deficits, allowing for more effective early surgical intervention. Moreover, our methodology allows for MR spectroscopy to be used in everyday clinical settings.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21020490</identifier><identifier>PMID: 33445603</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>acute ischemic stroke ; Aged ; Aged, 80 and over ; Body Temperature ; Brain Edema - diagnostic imaging ; Brain Ischemia - diagnostic imaging ; Brain Ischemia - physiopathology ; brain temperature ; Brief Report ; Carotid arteries ; Carotid Artery Diseases - physiopathology ; Carotid Artery, Internal - physiopathology ; cerebral blood flow change ; Chemical equilibrium ; Chemistry ; Chemistry, Analytical ; Choline ; Clinical outcomes ; Creatine ; Edema ; Engineering ; Engineering, Electrical & Electronic ; Female ; Heat ; Hemodynamics ; Humans ; Infarction ; Instruments & Instrumentation ; Ischemia ; less invasive ; Magnetic resonance spectroscopy ; Male ; Middle Aged ; Occlusion ; Patients ; Physical Sciences ; Proton magnetic resonance ; Proton Magnetic Resonance Spectroscopy - methods ; Science & Technology ; Spectroscopic analysis ; Spectrum analysis ; Stroke ; Swelling ; Technology ; Veins & arteries</subject><ispartof>Sensors (Basel, Switzerland), 2021-01, Vol.21 (2), p.490, Article 490</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000611706900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c469t-b483299a8845d760e3c0f1da4785daf14e2eb975db2c5e05fcd266ab970a7bf23</citedby><cites>FETCH-LOGICAL-c469t-b483299a8845d760e3c0f1da4785daf14e2eb975db2c5e05fcd266ab970a7bf23</cites><orcidid>0000-0001-9282-6499 ; 0000-0003-0582-0908 ; 0000-0003-1472-6032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827727/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827727/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33445603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishida, Tomohisa</creatorcontrib><creatorcontrib>Inoue, Takashi</creatorcontrib><creatorcontrib>Inoue, Tomoo</creatorcontrib><creatorcontrib>Endo, Toshiki</creatorcontrib><creatorcontrib>Fujimura, Miki</creatorcontrib><creatorcontrib>Niizuma, Kuniyasu</creatorcontrib><creatorcontrib>Endo, Hidenori</creatorcontrib><creatorcontrib>Tominaga, Teiji</creatorcontrib><title>Brain Temperature Measured by Magnetic Resonance Spectroscopy to Predict Clinical Outcome in Patients with Infarction</title><title>Sensors (Basel, Switzerland)</title><addtitle>SENSORS-BASEL</addtitle><addtitle>Sensors (Basel)</addtitle><description>Acute ischemic stroke is characterized by dynamic changes in metabolism and hemodynamics, which can affect brain temperature. We used proton magnetic resonance (MR) spectroscopy under everyday clinical settings to measure brain temperature in seven patients with internal carotid artery occlusion to explore the relationship between lesion temperature and clinical course. Regions of interest were selected in the infarct area and the corresponding contralateral region. Single-voxel MR spectroscopy was performed using the following parameters: 2000-ms repetition time, 144-ms echo time, and 128 excitations. Brain temperature was calculated from the chemical shift between water and N-acetyl aspartate, choline-containing compounds, or creatine phosphate. Within 48 h of onset, compared with the contralateral region temperature, brain temperature in the ischemic lesion was lower in five patients and higher in two patients. Severe brain swelling occurred subsequently in three of the five patients with lower lesion temperatures, but in neither of the two patients with higher lesion temperatures. The use of proton MR spectroscopy to measure brain temperature in patients with internal carotid artery occlusion may predict brain swelling and subsequent motor deficits, allowing for more effective early surgical intervention. Moreover, our methodology allows for MR spectroscopy to be used in everyday clinical settings.</description><subject>acute ischemic stroke</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Body Temperature</subject><subject>Brain Edema - diagnostic imaging</subject><subject>Brain Ischemia - diagnostic imaging</subject><subject>Brain Ischemia - physiopathology</subject><subject>brain temperature</subject><subject>Brief Report</subject><subject>Carotid arteries</subject><subject>Carotid Artery Diseases - physiopathology</subject><subject>Carotid Artery, Internal - physiopathology</subject><subject>cerebral blood flow change</subject><subject>Chemical equilibrium</subject><subject>Chemistry</subject><subject>Chemistry, Analytical</subject><subject>Choline</subject><subject>Clinical outcomes</subject><subject>Creatine</subject><subject>Edema</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Female</subject><subject>Heat</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Infarction</subject><subject>Instruments & Instrumentation</subject><subject>Ischemia</subject><subject>less invasive</subject><subject>Magnetic resonance spectroscopy</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Occlusion</subject><subject>Patients</subject><subject>Physical Sciences</subject><subject>Proton magnetic resonance</subject><subject>Proton Magnetic Resonance Spectroscopy - methods</subject><subject>Science & Technology</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Stroke</subject><subject>Swelling</subject><subject>Technology</subject><subject>Veins & arteries</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1vEzEQhlcIREvhwB9AlriAUMBfu7YvSBDxEalVKyjn1ax3NnW0sVPbS5V_j9OUqOXEaUbjZ17N65mqesnoeyEM_ZA4o5xKQx9Vx0xyOdOc08f38qPqWUorSrkQQj-tjoSQsm6oOK6mzxGcJ5e43mCEPEUkZwipxJ50W3IGS4_ZWfIDU_DgLZKfG7Q5hmTDZktyIBcFdTaT-ei8szCS8ynbsEZSZC8gO_Q5kRuXr8jCDxBtdsE_r54MMCZ8cRdPql9fv1zOv89Oz78t5p9OZ1Y2Js86qQU3BrSWda8aisLSgfUgla57GJhEjp1Rdd9xWyOtB9vzpoFSoqC6gYuTarHX7QOs2k10a4jbNoBrbwshLluIxd6IrZHGdsaKutdM0qbWykCtLfYdcGUHKFof91qbqVtjb4uvCOMD0Ycv3l21y_C7VZorxVUReHMnEMP1hCm3a5csjiN4DFNq-c6WYVqKgr7-B12FKfryVbeUoLWUtFBv95Qt60gRh8MwjLa7w2gPh1HYV_enP5B_L6EAeg_cYBeGZMveLB4wSmnDmKKNKRllc5dht8d5mHwure_-v1X8AQ5s1T8</recordid><startdate>20210112</startdate><enddate>20210112</enddate><creator>Ishida, Tomohisa</creator><creator>Inoue, Takashi</creator><creator>Inoue, Tomoo</creator><creator>Endo, Toshiki</creator><creator>Fujimura, Miki</creator><creator>Niizuma, Kuniyasu</creator><creator>Endo, Hidenori</creator><creator>Tominaga, Teiji</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9282-6499</orcidid><orcidid>https://orcid.org/0000-0003-0582-0908</orcidid><orcidid>https://orcid.org/0000-0003-1472-6032</orcidid></search><sort><creationdate>20210112</creationdate><title>Brain Temperature Measured by Magnetic Resonance Spectroscopy to Predict Clinical Outcome in Patients with Infarction</title><author>Ishida, Tomohisa ; Inoue, Takashi ; Inoue, Tomoo ; Endo, Toshiki ; Fujimura, Miki ; Niizuma, Kuniyasu ; Endo, Hidenori ; Tominaga, Teiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-b483299a8845d760e3c0f1da4785daf14e2eb975db2c5e05fcd266ab970a7bf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>acute ischemic stroke</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Body Temperature</topic><topic>Brain Edema - diagnostic imaging</topic><topic>Brain Ischemia - diagnostic imaging</topic><topic>Brain Ischemia - physiopathology</topic><topic>brain temperature</topic><topic>Brief Report</topic><topic>Carotid arteries</topic><topic>Carotid Artery Diseases - physiopathology</topic><topic>Carotid Artery, Internal - physiopathology</topic><topic>cerebral blood flow change</topic><topic>Chemical equilibrium</topic><topic>Chemistry</topic><topic>Chemistry, Analytical</topic><topic>Choline</topic><topic>Clinical outcomes</topic><topic>Creatine</topic><topic>Edema</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Female</topic><topic>Heat</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Infarction</topic><topic>Instruments & Instrumentation</topic><topic>Ischemia</topic><topic>less invasive</topic><topic>Magnetic resonance spectroscopy</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Occlusion</topic><topic>Patients</topic><topic>Physical Sciences</topic><topic>Proton magnetic resonance</topic><topic>Proton Magnetic Resonance Spectroscopy - methods</topic><topic>Science & Technology</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Stroke</topic><topic>Swelling</topic><topic>Technology</topic><topic>Veins & arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishida, Tomohisa</creatorcontrib><creatorcontrib>Inoue, Takashi</creatorcontrib><creatorcontrib>Inoue, Tomoo</creatorcontrib><creatorcontrib>Endo, Toshiki</creatorcontrib><creatorcontrib>Fujimura, Miki</creatorcontrib><creatorcontrib>Niizuma, Kuniyasu</creatorcontrib><creatorcontrib>Endo, Hidenori</creatorcontrib><creatorcontrib>Tominaga, Teiji</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishida, Tomohisa</au><au>Inoue, Takashi</au><au>Inoue, Tomoo</au><au>Endo, Toshiki</au><au>Fujimura, Miki</au><au>Niizuma, Kuniyasu</au><au>Endo, Hidenori</au><au>Tominaga, Teiji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain Temperature Measured by Magnetic Resonance Spectroscopy to Predict Clinical Outcome in Patients with Infarction</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><stitle>SENSORS-BASEL</stitle><addtitle>Sensors (Basel)</addtitle><date>2021-01-12</date><risdate>2021</risdate><volume>21</volume><issue>2</issue><spage>490</spage><pages>490-</pages><artnum>490</artnum><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Acute ischemic stroke is characterized by dynamic changes in metabolism and hemodynamics, which can affect brain temperature. We used proton magnetic resonance (MR) spectroscopy under everyday clinical settings to measure brain temperature in seven patients with internal carotid artery occlusion to explore the relationship between lesion temperature and clinical course. Regions of interest were selected in the infarct area and the corresponding contralateral region. Single-voxel MR spectroscopy was performed using the following parameters: 2000-ms repetition time, 144-ms echo time, and 128 excitations. Brain temperature was calculated from the chemical shift between water and N-acetyl aspartate, choline-containing compounds, or creatine phosphate. Within 48 h of onset, compared with the contralateral region temperature, brain temperature in the ischemic lesion was lower in five patients and higher in two patients. Severe brain swelling occurred subsequently in three of the five patients with lower lesion temperatures, but in neither of the two patients with higher lesion temperatures. The use of proton MR spectroscopy to measure brain temperature in patients with internal carotid artery occlusion may predict brain swelling and subsequent motor deficits, allowing for more effective early surgical intervention. Moreover, our methodology allows for MR spectroscopy to be used in everyday clinical settings.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33445603</pmid><doi>10.3390/s21020490</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9282-6499</orcidid><orcidid>https://orcid.org/0000-0003-0582-0908</orcidid><orcidid>https://orcid.org/0000-0003-1472-6032</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2021-01, Vol.21 (2), p.490, Article 490 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_webofscience_primary_000611706900001CitationCount |
source | MEDLINE; DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | acute ischemic stroke Aged Aged, 80 and over Body Temperature Brain Edema - diagnostic imaging Brain Ischemia - diagnostic imaging Brain Ischemia - physiopathology brain temperature Brief Report Carotid arteries Carotid Artery Diseases - physiopathology Carotid Artery, Internal - physiopathology cerebral blood flow change Chemical equilibrium Chemistry Chemistry, Analytical Choline Clinical outcomes Creatine Edema Engineering Engineering, Electrical & Electronic Female Heat Hemodynamics Humans Infarction Instruments & Instrumentation Ischemia less invasive Magnetic resonance spectroscopy Male Middle Aged Occlusion Patients Physical Sciences Proton magnetic resonance Proton Magnetic Resonance Spectroscopy - methods Science & Technology Spectroscopic analysis Spectrum analysis Stroke Swelling Technology Veins & arteries |
title | Brain Temperature Measured by Magnetic Resonance Spectroscopy to Predict Clinical Outcome in Patients with Infarction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T14%3A11%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20Temperature%20Measured%20by%20Magnetic%20Resonance%20Spectroscopy%20to%20Predict%20Clinical%20Outcome%20in%20Patients%20with%20Infarction&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Ishida,%20Tomohisa&rft.date=2021-01-12&rft.volume=21&rft.issue=2&rft.spage=490&rft.pages=490-&rft.artnum=490&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21020490&rft_dat=%3Cproquest_webof%3E2478305440%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478305440&rft_id=info:pmid/33445603&rft_doaj_id=oai_doaj_org_article_949cb9c35d814065879a58cedba27cfa&rfr_iscdi=true |