Brain Temperature Measured by Magnetic Resonance Spectroscopy to Predict Clinical Outcome in Patients with Infarction

Acute ischemic stroke is characterized by dynamic changes in metabolism and hemodynamics, which can affect brain temperature. We used proton magnetic resonance (MR) spectroscopy under everyday clinical settings to measure brain temperature in seven patients with internal carotid artery occlusion to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-01, Vol.21 (2), p.490, Article 490
Hauptverfasser: Ishida, Tomohisa, Inoue, Takashi, Inoue, Tomoo, Endo, Toshiki, Fujimura, Miki, Niizuma, Kuniyasu, Endo, Hidenori, Tominaga, Teiji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 490
container_title Sensors (Basel, Switzerland)
container_volume 21
creator Ishida, Tomohisa
Inoue, Takashi
Inoue, Tomoo
Endo, Toshiki
Fujimura, Miki
Niizuma, Kuniyasu
Endo, Hidenori
Tominaga, Teiji
description Acute ischemic stroke is characterized by dynamic changes in metabolism and hemodynamics, which can affect brain temperature. We used proton magnetic resonance (MR) spectroscopy under everyday clinical settings to measure brain temperature in seven patients with internal carotid artery occlusion to explore the relationship between lesion temperature and clinical course. Regions of interest were selected in the infarct area and the corresponding contralateral region. Single-voxel MR spectroscopy was performed using the following parameters: 2000-ms repetition time, 144-ms echo time, and 128 excitations. Brain temperature was calculated from the chemical shift between water and N-acetyl aspartate, choline-containing compounds, or creatine phosphate. Within 48 h of onset, compared with the contralateral region temperature, brain temperature in the ischemic lesion was lower in five patients and higher in two patients. Severe brain swelling occurred subsequently in three of the five patients with lower lesion temperatures, but in neither of the two patients with higher lesion temperatures. The use of proton MR spectroscopy to measure brain temperature in patients with internal carotid artery occlusion may predict brain swelling and subsequent motor deficits, allowing for more effective early surgical intervention. Moreover, our methodology allows for MR spectroscopy to be used in everyday clinical settings.
doi_str_mv 10.3390/s21020490
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000611706900001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_949cb9c35d814065879a58cedba27cfa</doaj_id><sourcerecordid>2478305440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-b483299a8845d760e3c0f1da4785daf14e2eb975db2c5e05fcd266ab970a7bf23</originalsourceid><addsrcrecordid>eNqNkk1vEzEQhlcIREvhwB9AlriAUMBfu7YvSBDxEalVKyjn1ax3NnW0sVPbS5V_j9OUqOXEaUbjZ17N65mqesnoeyEM_ZA4o5xKQx9Vx0xyOdOc08f38qPqWUorSrkQQj-tjoSQsm6oOK6mzxGcJ5e43mCEPEUkZwipxJ50W3IGS4_ZWfIDU_DgLZKfG7Q5hmTDZktyIBcFdTaT-ei8szCS8ynbsEZSZC8gO_Q5kRuXr8jCDxBtdsE_r54MMCZ8cRdPql9fv1zOv89Oz78t5p9OZ1Y2Js86qQU3BrSWda8aisLSgfUgla57GJhEjp1Rdd9xWyOtB9vzpoFSoqC6gYuTarHX7QOs2k10a4jbNoBrbwshLluIxd6IrZHGdsaKutdM0qbWykCtLfYdcGUHKFof91qbqVtjb4uvCOMD0Ycv3l21y_C7VZorxVUReHMnEMP1hCm3a5csjiN4DFNq-c6WYVqKgr7-B12FKfryVbeUoLWUtFBv95Qt60gRh8MwjLa7w2gPh1HYV_enP5B_L6EAeg_cYBeGZMveLB4wSmnDmKKNKRllc5dht8d5mHwure_-v1X8AQ5s1T8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478305440</pqid></control><display><type>article</type><title>Brain Temperature Measured by Magnetic Resonance Spectroscopy to Predict Clinical Outcome in Patients with Infarction</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ishida, Tomohisa ; Inoue, Takashi ; Inoue, Tomoo ; Endo, Toshiki ; Fujimura, Miki ; Niizuma, Kuniyasu ; Endo, Hidenori ; Tominaga, Teiji</creator><creatorcontrib>Ishida, Tomohisa ; Inoue, Takashi ; Inoue, Tomoo ; Endo, Toshiki ; Fujimura, Miki ; Niizuma, Kuniyasu ; Endo, Hidenori ; Tominaga, Teiji</creatorcontrib><description>Acute ischemic stroke is characterized by dynamic changes in metabolism and hemodynamics, which can affect brain temperature. We used proton magnetic resonance (MR) spectroscopy under everyday clinical settings to measure brain temperature in seven patients with internal carotid artery occlusion to explore the relationship between lesion temperature and clinical course. Regions of interest were selected in the infarct area and the corresponding contralateral region. Single-voxel MR spectroscopy was performed using the following parameters: 2000-ms repetition time, 144-ms echo time, and 128 excitations. Brain temperature was calculated from the chemical shift between water and N-acetyl aspartate, choline-containing compounds, or creatine phosphate. Within 48 h of onset, compared with the contralateral region temperature, brain temperature in the ischemic lesion was lower in five patients and higher in two patients. Severe brain swelling occurred subsequently in three of the five patients with lower lesion temperatures, but in neither of the two patients with higher lesion temperatures. The use of proton MR spectroscopy to measure brain temperature in patients with internal carotid artery occlusion may predict brain swelling and subsequent motor deficits, allowing for more effective early surgical intervention. Moreover, our methodology allows for MR spectroscopy to be used in everyday clinical settings.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21020490</identifier><identifier>PMID: 33445603</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>acute ischemic stroke ; Aged ; Aged, 80 and over ; Body Temperature ; Brain Edema - diagnostic imaging ; Brain Ischemia - diagnostic imaging ; Brain Ischemia - physiopathology ; brain temperature ; Brief Report ; Carotid arteries ; Carotid Artery Diseases - physiopathology ; Carotid Artery, Internal - physiopathology ; cerebral blood flow change ; Chemical equilibrium ; Chemistry ; Chemistry, Analytical ; Choline ; Clinical outcomes ; Creatine ; Edema ; Engineering ; Engineering, Electrical &amp; Electronic ; Female ; Heat ; Hemodynamics ; Humans ; Infarction ; Instruments &amp; Instrumentation ; Ischemia ; less invasive ; Magnetic resonance spectroscopy ; Male ; Middle Aged ; Occlusion ; Patients ; Physical Sciences ; Proton magnetic resonance ; Proton Magnetic Resonance Spectroscopy - methods ; Science &amp; Technology ; Spectroscopic analysis ; Spectrum analysis ; Stroke ; Swelling ; Technology ; Veins &amp; arteries</subject><ispartof>Sensors (Basel, Switzerland), 2021-01, Vol.21 (2), p.490, Article 490</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000611706900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c469t-b483299a8845d760e3c0f1da4785daf14e2eb975db2c5e05fcd266ab970a7bf23</citedby><cites>FETCH-LOGICAL-c469t-b483299a8845d760e3c0f1da4785daf14e2eb975db2c5e05fcd266ab970a7bf23</cites><orcidid>0000-0001-9282-6499 ; 0000-0003-0582-0908 ; 0000-0003-1472-6032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827727/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827727/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33445603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishida, Tomohisa</creatorcontrib><creatorcontrib>Inoue, Takashi</creatorcontrib><creatorcontrib>Inoue, Tomoo</creatorcontrib><creatorcontrib>Endo, Toshiki</creatorcontrib><creatorcontrib>Fujimura, Miki</creatorcontrib><creatorcontrib>Niizuma, Kuniyasu</creatorcontrib><creatorcontrib>Endo, Hidenori</creatorcontrib><creatorcontrib>Tominaga, Teiji</creatorcontrib><title>Brain Temperature Measured by Magnetic Resonance Spectroscopy to Predict Clinical Outcome in Patients with Infarction</title><title>Sensors (Basel, Switzerland)</title><addtitle>SENSORS-BASEL</addtitle><addtitle>Sensors (Basel)</addtitle><description>Acute ischemic stroke is characterized by dynamic changes in metabolism and hemodynamics, which can affect brain temperature. We used proton magnetic resonance (MR) spectroscopy under everyday clinical settings to measure brain temperature in seven patients with internal carotid artery occlusion to explore the relationship between lesion temperature and clinical course. Regions of interest were selected in the infarct area and the corresponding contralateral region. Single-voxel MR spectroscopy was performed using the following parameters: 2000-ms repetition time, 144-ms echo time, and 128 excitations. Brain temperature was calculated from the chemical shift between water and N-acetyl aspartate, choline-containing compounds, or creatine phosphate. Within 48 h of onset, compared with the contralateral region temperature, brain temperature in the ischemic lesion was lower in five patients and higher in two patients. Severe brain swelling occurred subsequently in three of the five patients with lower lesion temperatures, but in neither of the two patients with higher lesion temperatures. The use of proton MR spectroscopy to measure brain temperature in patients with internal carotid artery occlusion may predict brain swelling and subsequent motor deficits, allowing for more effective early surgical intervention. Moreover, our methodology allows for MR spectroscopy to be used in everyday clinical settings.</description><subject>acute ischemic stroke</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Body Temperature</subject><subject>Brain Edema - diagnostic imaging</subject><subject>Brain Ischemia - diagnostic imaging</subject><subject>Brain Ischemia - physiopathology</subject><subject>brain temperature</subject><subject>Brief Report</subject><subject>Carotid arteries</subject><subject>Carotid Artery Diseases - physiopathology</subject><subject>Carotid Artery, Internal - physiopathology</subject><subject>cerebral blood flow change</subject><subject>Chemical equilibrium</subject><subject>Chemistry</subject><subject>Chemistry, Analytical</subject><subject>Choline</subject><subject>Clinical outcomes</subject><subject>Creatine</subject><subject>Edema</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Female</subject><subject>Heat</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Infarction</subject><subject>Instruments &amp; Instrumentation</subject><subject>Ischemia</subject><subject>less invasive</subject><subject>Magnetic resonance spectroscopy</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Occlusion</subject><subject>Patients</subject><subject>Physical Sciences</subject><subject>Proton magnetic resonance</subject><subject>Proton Magnetic Resonance Spectroscopy - methods</subject><subject>Science &amp; Technology</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Stroke</subject><subject>Swelling</subject><subject>Technology</subject><subject>Veins &amp; arteries</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1vEzEQhlcIREvhwB9AlriAUMBfu7YvSBDxEalVKyjn1ax3NnW0sVPbS5V_j9OUqOXEaUbjZ17N65mqesnoeyEM_ZA4o5xKQx9Vx0xyOdOc08f38qPqWUorSrkQQj-tjoSQsm6oOK6mzxGcJ5e43mCEPEUkZwipxJ50W3IGS4_ZWfIDU_DgLZKfG7Q5hmTDZktyIBcFdTaT-ei8szCS8ynbsEZSZC8gO_Q5kRuXr8jCDxBtdsE_r54MMCZ8cRdPql9fv1zOv89Oz78t5p9OZ1Y2Js86qQU3BrSWda8aisLSgfUgla57GJhEjp1Rdd9xWyOtB9vzpoFSoqC6gYuTarHX7QOs2k10a4jbNoBrbwshLluIxd6IrZHGdsaKutdM0qbWykCtLfYdcGUHKFof91qbqVtjb4uvCOMD0Ycv3l21y_C7VZorxVUReHMnEMP1hCm3a5csjiN4DFNq-c6WYVqKgr7-B12FKfryVbeUoLWUtFBv95Qt60gRh8MwjLa7w2gPh1HYV_enP5B_L6EAeg_cYBeGZMveLB4wSmnDmKKNKRllc5dht8d5mHwure_-v1X8AQ5s1T8</recordid><startdate>20210112</startdate><enddate>20210112</enddate><creator>Ishida, Tomohisa</creator><creator>Inoue, Takashi</creator><creator>Inoue, Tomoo</creator><creator>Endo, Toshiki</creator><creator>Fujimura, Miki</creator><creator>Niizuma, Kuniyasu</creator><creator>Endo, Hidenori</creator><creator>Tominaga, Teiji</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9282-6499</orcidid><orcidid>https://orcid.org/0000-0003-0582-0908</orcidid><orcidid>https://orcid.org/0000-0003-1472-6032</orcidid></search><sort><creationdate>20210112</creationdate><title>Brain Temperature Measured by Magnetic Resonance Spectroscopy to Predict Clinical Outcome in Patients with Infarction</title><author>Ishida, Tomohisa ; Inoue, Takashi ; Inoue, Tomoo ; Endo, Toshiki ; Fujimura, Miki ; Niizuma, Kuniyasu ; Endo, Hidenori ; Tominaga, Teiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-b483299a8845d760e3c0f1da4785daf14e2eb975db2c5e05fcd266ab970a7bf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>acute ischemic stroke</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Body Temperature</topic><topic>Brain Edema - diagnostic imaging</topic><topic>Brain Ischemia - diagnostic imaging</topic><topic>Brain Ischemia - physiopathology</topic><topic>brain temperature</topic><topic>Brief Report</topic><topic>Carotid arteries</topic><topic>Carotid Artery Diseases - physiopathology</topic><topic>Carotid Artery, Internal - physiopathology</topic><topic>cerebral blood flow change</topic><topic>Chemical equilibrium</topic><topic>Chemistry</topic><topic>Chemistry, Analytical</topic><topic>Choline</topic><topic>Clinical outcomes</topic><topic>Creatine</topic><topic>Edema</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Female</topic><topic>Heat</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Infarction</topic><topic>Instruments &amp; Instrumentation</topic><topic>Ischemia</topic><topic>less invasive</topic><topic>Magnetic resonance spectroscopy</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Occlusion</topic><topic>Patients</topic><topic>Physical Sciences</topic><topic>Proton magnetic resonance</topic><topic>Proton Magnetic Resonance Spectroscopy - methods</topic><topic>Science &amp; Technology</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Stroke</topic><topic>Swelling</topic><topic>Technology</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishida, Tomohisa</creatorcontrib><creatorcontrib>Inoue, Takashi</creatorcontrib><creatorcontrib>Inoue, Tomoo</creatorcontrib><creatorcontrib>Endo, Toshiki</creatorcontrib><creatorcontrib>Fujimura, Miki</creatorcontrib><creatorcontrib>Niizuma, Kuniyasu</creatorcontrib><creatorcontrib>Endo, Hidenori</creatorcontrib><creatorcontrib>Tominaga, Teiji</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishida, Tomohisa</au><au>Inoue, Takashi</au><au>Inoue, Tomoo</au><au>Endo, Toshiki</au><au>Fujimura, Miki</au><au>Niizuma, Kuniyasu</au><au>Endo, Hidenori</au><au>Tominaga, Teiji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain Temperature Measured by Magnetic Resonance Spectroscopy to Predict Clinical Outcome in Patients with Infarction</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><stitle>SENSORS-BASEL</stitle><addtitle>Sensors (Basel)</addtitle><date>2021-01-12</date><risdate>2021</risdate><volume>21</volume><issue>2</issue><spage>490</spage><pages>490-</pages><artnum>490</artnum><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Acute ischemic stroke is characterized by dynamic changes in metabolism and hemodynamics, which can affect brain temperature. We used proton magnetic resonance (MR) spectroscopy under everyday clinical settings to measure brain temperature in seven patients with internal carotid artery occlusion to explore the relationship between lesion temperature and clinical course. Regions of interest were selected in the infarct area and the corresponding contralateral region. Single-voxel MR spectroscopy was performed using the following parameters: 2000-ms repetition time, 144-ms echo time, and 128 excitations. Brain temperature was calculated from the chemical shift between water and N-acetyl aspartate, choline-containing compounds, or creatine phosphate. Within 48 h of onset, compared with the contralateral region temperature, brain temperature in the ischemic lesion was lower in five patients and higher in two patients. Severe brain swelling occurred subsequently in three of the five patients with lower lesion temperatures, but in neither of the two patients with higher lesion temperatures. The use of proton MR spectroscopy to measure brain temperature in patients with internal carotid artery occlusion may predict brain swelling and subsequent motor deficits, allowing for more effective early surgical intervention. Moreover, our methodology allows for MR spectroscopy to be used in everyday clinical settings.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33445603</pmid><doi>10.3390/s21020490</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9282-6499</orcidid><orcidid>https://orcid.org/0000-0003-0582-0908</orcidid><orcidid>https://orcid.org/0000-0003-1472-6032</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2021-01, Vol.21 (2), p.490, Article 490
issn 1424-8220
1424-8220
language eng
recordid cdi_webofscience_primary_000611706900001CitationCount
source MEDLINE; DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects acute ischemic stroke
Aged
Aged, 80 and over
Body Temperature
Brain Edema - diagnostic imaging
Brain Ischemia - diagnostic imaging
Brain Ischemia - physiopathology
brain temperature
Brief Report
Carotid arteries
Carotid Artery Diseases - physiopathology
Carotid Artery, Internal - physiopathology
cerebral blood flow change
Chemical equilibrium
Chemistry
Chemistry, Analytical
Choline
Clinical outcomes
Creatine
Edema
Engineering
Engineering, Electrical & Electronic
Female
Heat
Hemodynamics
Humans
Infarction
Instruments & Instrumentation
Ischemia
less invasive
Magnetic resonance spectroscopy
Male
Middle Aged
Occlusion
Patients
Physical Sciences
Proton magnetic resonance
Proton Magnetic Resonance Spectroscopy - methods
Science & Technology
Spectroscopic analysis
Spectrum analysis
Stroke
Swelling
Technology
Veins & arteries
title Brain Temperature Measured by Magnetic Resonance Spectroscopy to Predict Clinical Outcome in Patients with Infarction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T14%3A11%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20Temperature%20Measured%20by%20Magnetic%20Resonance%20Spectroscopy%20to%20Predict%20Clinical%20Outcome%20in%20Patients%20with%20Infarction&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Ishida,%20Tomohisa&rft.date=2021-01-12&rft.volume=21&rft.issue=2&rft.spage=490&rft.pages=490-&rft.artnum=490&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21020490&rft_dat=%3Cproquest_webof%3E2478305440%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478305440&rft_id=info:pmid/33445603&rft_doaj_id=oai_doaj_org_article_949cb9c35d814065879a58cedba27cfa&rfr_iscdi=true