Inverse Numerical Iterative Technique for Finding all Roots of Nonlinear Equations with Engineering Applications

We introduce here a new two-step derivate-free inverse simultaneous iterative method for estimating all roots of nonlinear equation. It is proved that convergence order of the newly constructed method is four. Lower bound of the convergence order is determined using Mathematica and verified with the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematics (Hidawi) 2021, Vol.2021, p.1-10, Article 6643514
Hauptverfasser: Shams, Mudassir, Rafiq, Naila, Ahmad, Babar, Mir, Nazir Ahmad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce here a new two-step derivate-free inverse simultaneous iterative method for estimating all roots of nonlinear equation. It is proved that convergence order of the newly constructed method is four. Lower bound of the convergence order is determined using Mathematica and verified with theoretical local convergence order of the method introduced. Some nonlinear models which are taken from physical and engineering sciences as numerical test examples to demonstrate the performance and efficiency of the newly constructed modified inverse simultaneous methods as compared to classical methods existing in literature are presented. Dynamical planes and residual graphs are drawn using MATLAB to elaborate efficiency, robustness, and authentication in its domain.
ISSN:2314-4629
2314-4785
DOI:10.1155/2021/6643514