Platinum Based Nanoparticles Produced by a Pulsed Spark Discharge as a Promising Material for Gas Sensors

We have applied spark ablation technology for producing nanoparticles from platinum ingots (purity of 99.97 wt. %) as a feed material by using air as a carrier gas. A maximum production rate of about 400 mg/h was achieved with an energy per pulse of 0.5 J and a pulse repetition rate of 250 Hz. The s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-01, Vol.11 (2), p.526, Article 526
Hauptverfasser: Volkov, Ivan A., Simonenko, Nikolay P., Efimov, Alexey A., Simonenko, Tatiana L., Vlasov, Ivan S., Borisov, Vladislav I., Arsenov, Pavel V., Lebedinskii, Yuri Yu, Markeev, Andrey M., Lizunova, Anna A., Mokrushin, Artem S., Simonenko, Elizaveta P., Buslov, Vadim A., Varfolomeev, Andrey E., Liu, Zhifu, Vasiliev, Alexey A., Ivanov, Victor V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 526
container_title Applied sciences
container_volume 11
creator Volkov, Ivan A.
Simonenko, Nikolay P.
Efimov, Alexey A.
Simonenko, Tatiana L.
Vlasov, Ivan S.
Borisov, Vladislav I.
Arsenov, Pavel V.
Lebedinskii, Yuri Yu
Markeev, Andrey M.
Lizunova, Anna A.
Mokrushin, Artem S.
Simonenko, Elizaveta P.
Buslov, Vadim A.
Varfolomeev, Andrey E.
Liu, Zhifu
Vasiliev, Alexey A.
Ivanov, Victor V.
description We have applied spark ablation technology for producing nanoparticles from platinum ingots (purity of 99.97 wt. %) as a feed material by using air as a carrier gas. A maximum production rate of about 400 mg/h was achieved with an energy per pulse of 0.5 J and a pulse repetition rate of 250 Hz. The synthesized nanomaterial, composed of an amorphous platinum oxide PtO (83 wt. %) and a crystalline metallic platinum (17 wt. %), was used for formulating functional colloidal ink. Annealing of the deposited ink at 750 degrees C resulted in the formation of a polycrystalline material comprising 99.7 wt. % of platinum. To demonstrate the possibility of application of the formulated ink in printed electronics, we have patterned conductive lines and microheaters on alumina substrates and 20 mu m thick low-temperature co-fired ceramic (LTCC) membranes with the use of aerosol jet printing technology. The power consumption of microheaters fabricated on LTCC membranes was found to be about 140 mW at a temperature of the hot part of 500 degrees C, thus allowing one to consider these structures as promising micro-hotplates for metal oxide semiconductor (MOS) gas sensors. The catalytic activity of the synthesized nanoparticles was demonstrated by measuring the resistance transients of the non-sintered microheaters upon exposure to 2500 ppm of hydrogen.
doi_str_mv 10.3390/app11020526
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000610930500001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6b01fe016a09432db0814f8366fb0602</doaj_id><sourcerecordid>2477079985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-520c52a16de360219c47c47e169f0002075ecd8ff5771ba712c06d344c656ce03</originalsourceid><addsrcrecordid>eNqNUU1r3DAQNaWBLmlO_QOCHsu2M5It2cdm89FAPhY2OYuxLG213bUcyabk30fbDWmOEQKJmTfvzeMVxReE70I08IOGARE4VFx-KGYclJyLEtXHN_9PxUlKG8inQVEjzAq_3NLo-2nHTinZjt1SHwaKozdbm9gyhm4yudw-MWLLabuHrHL_DzvzyfymuLaM0r4Xw84n36_ZDY02etoyFyK7zM2V7VOI6XNx5CgTnLy8x8XDxfn94tf8-u7yavHzem6ELMd5xcFUnFB2Vkjg2JhS5WtRNi7vna1U1nS1c5VS2JJCbkB2oiyNrKSxII6LqwNvF2ijh-h3FJ90IK__FUJc6xd_WraAzgJKgqYUvGuhxtLVQkrXQhbPXF8PXEMMj5NNo96EKfZ5fc1LpUA1TV1l1LcDysSQUrTuVRVB76PRb6LJ6PqA_mvb4JLxtjf2dSJblAiNgGqfEi78mOMJ_SJM_fhf6D2j4hk1059C</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477079985</pqid></control><display><type>article</type><title>Platinum Based Nanoparticles Produced by a Pulsed Spark Discharge as a Promising Material for Gas Sensors</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Volkov, Ivan A. ; Simonenko, Nikolay P. ; Efimov, Alexey A. ; Simonenko, Tatiana L. ; Vlasov, Ivan S. ; Borisov, Vladislav I. ; Arsenov, Pavel V. ; Lebedinskii, Yuri Yu ; Markeev, Andrey M. ; Lizunova, Anna A. ; Mokrushin, Artem S. ; Simonenko, Elizaveta P. ; Buslov, Vadim A. ; Varfolomeev, Andrey E. ; Liu, Zhifu ; Vasiliev, Alexey A. ; Ivanov, Victor V.</creator><creatorcontrib>Volkov, Ivan A. ; Simonenko, Nikolay P. ; Efimov, Alexey A. ; Simonenko, Tatiana L. ; Vlasov, Ivan S. ; Borisov, Vladislav I. ; Arsenov, Pavel V. ; Lebedinskii, Yuri Yu ; Markeev, Andrey M. ; Lizunova, Anna A. ; Mokrushin, Artem S. ; Simonenko, Elizaveta P. ; Buslov, Vadim A. ; Varfolomeev, Andrey E. ; Liu, Zhifu ; Vasiliev, Alexey A. ; Ivanov, Victor V.</creatorcontrib><description>We have applied spark ablation technology for producing nanoparticles from platinum ingots (purity of 99.97 wt. %) as a feed material by using air as a carrier gas. A maximum production rate of about 400 mg/h was achieved with an energy per pulse of 0.5 J and a pulse repetition rate of 250 Hz. The synthesized nanomaterial, composed of an amorphous platinum oxide PtO (83 wt. %) and a crystalline metallic platinum (17 wt. %), was used for formulating functional colloidal ink. Annealing of the deposited ink at 750 degrees C resulted in the formation of a polycrystalline material comprising 99.7 wt. % of platinum. To demonstrate the possibility of application of the formulated ink in printed electronics, we have patterned conductive lines and microheaters on alumina substrates and 20 mu m thick low-temperature co-fired ceramic (LTCC) membranes with the use of aerosol jet printing technology. The power consumption of microheaters fabricated on LTCC membranes was found to be about 140 mW at a temperature of the hot part of 500 degrees C, thus allowing one to consider these structures as promising micro-hotplates for metal oxide semiconductor (MOS) gas sensors. The catalytic activity of the synthesized nanoparticles was demonstrated by measuring the resistance transients of the non-sintered microheaters upon exposure to 2500 ppm of hydrogen.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app11020526</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Ablation ; aerosol jet printing ; Aerosols ; Aluminum oxide ; Carrier gases ; Catalytic activity ; Chemistry ; Chemistry, Multidisciplinary ; Electric sparks ; Electrodes ; Engineering ; Engineering, Multidisciplinary ; Gas sensors ; Jet printing ; Low temperature ; Materials Science ; Materials Science, Multidisciplinary ; Membranes ; Metal oxide semiconductors ; Nanomaterials ; Nanoparticles ; Nitrates ; Physical Sciences ; Physics ; Physics, Applied ; Platinum ; platinum-based functional ink ; Power consumption ; printed gas sensors ; Pulse repetition rate ; Science &amp; Technology ; Sensors ; Solvents ; spark ablation technology ; Technology</subject><ispartof>Applied sciences, 2021-01, Vol.11 (2), p.526, Article 526</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000610930500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c364t-520c52a16de360219c47c47e169f0002075ecd8ff5771ba712c06d344c656ce03</citedby><cites>FETCH-LOGICAL-c364t-520c52a16de360219c47c47e169f0002075ecd8ff5771ba712c06d344c656ce03</cites><orcidid>0000-0002-8130-8503 ; 0000-0003-1130-4969 ; 0000-0002-4209-6034 ; 0000-0001-8112-1821 ; 0000-0001-9969-0598 ; 0000-0003-3276-0277 ; 0000-0002-9324-2716 ; 0000-0002-2895-4696 ; 0000-0001-6777-5706 ; 0000-0003-4865-3054 ; 0000-0002-7416-1638 ; 0000-0001-7186-5050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Volkov, Ivan A.</creatorcontrib><creatorcontrib>Simonenko, Nikolay P.</creatorcontrib><creatorcontrib>Efimov, Alexey A.</creatorcontrib><creatorcontrib>Simonenko, Tatiana L.</creatorcontrib><creatorcontrib>Vlasov, Ivan S.</creatorcontrib><creatorcontrib>Borisov, Vladislav I.</creatorcontrib><creatorcontrib>Arsenov, Pavel V.</creatorcontrib><creatorcontrib>Lebedinskii, Yuri Yu</creatorcontrib><creatorcontrib>Markeev, Andrey M.</creatorcontrib><creatorcontrib>Lizunova, Anna A.</creatorcontrib><creatorcontrib>Mokrushin, Artem S.</creatorcontrib><creatorcontrib>Simonenko, Elizaveta P.</creatorcontrib><creatorcontrib>Buslov, Vadim A.</creatorcontrib><creatorcontrib>Varfolomeev, Andrey E.</creatorcontrib><creatorcontrib>Liu, Zhifu</creatorcontrib><creatorcontrib>Vasiliev, Alexey A.</creatorcontrib><creatorcontrib>Ivanov, Victor V.</creatorcontrib><title>Platinum Based Nanoparticles Produced by a Pulsed Spark Discharge as a Promising Material for Gas Sensors</title><title>Applied sciences</title><addtitle>APPL SCI-BASEL</addtitle><description>We have applied spark ablation technology for producing nanoparticles from platinum ingots (purity of 99.97 wt. %) as a feed material by using air as a carrier gas. A maximum production rate of about 400 mg/h was achieved with an energy per pulse of 0.5 J and a pulse repetition rate of 250 Hz. The synthesized nanomaterial, composed of an amorphous platinum oxide PtO (83 wt. %) and a crystalline metallic platinum (17 wt. %), was used for formulating functional colloidal ink. Annealing of the deposited ink at 750 degrees C resulted in the formation of a polycrystalline material comprising 99.7 wt. % of platinum. To demonstrate the possibility of application of the formulated ink in printed electronics, we have patterned conductive lines and microheaters on alumina substrates and 20 mu m thick low-temperature co-fired ceramic (LTCC) membranes with the use of aerosol jet printing technology. The power consumption of microheaters fabricated on LTCC membranes was found to be about 140 mW at a temperature of the hot part of 500 degrees C, thus allowing one to consider these structures as promising micro-hotplates for metal oxide semiconductor (MOS) gas sensors. The catalytic activity of the synthesized nanoparticles was demonstrated by measuring the resistance transients of the non-sintered microheaters upon exposure to 2500 ppm of hydrogen.</description><subject>Ablation</subject><subject>aerosol jet printing</subject><subject>Aerosols</subject><subject>Aluminum oxide</subject><subject>Carrier gases</subject><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Electric sparks</subject><subject>Electrodes</subject><subject>Engineering</subject><subject>Engineering, Multidisciplinary</subject><subject>Gas sensors</subject><subject>Jet printing</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Membranes</subject><subject>Metal oxide semiconductors</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nitrates</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Platinum</subject><subject>platinum-based functional ink</subject><subject>Power consumption</subject><subject>printed gas sensors</subject><subject>Pulse repetition rate</subject><subject>Science &amp; Technology</subject><subject>Sensors</subject><subject>Solvents</subject><subject>spark ablation technology</subject><subject>Technology</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNUU1r3DAQNaWBLmlO_QOCHsu2M5It2cdm89FAPhY2OYuxLG213bUcyabk30fbDWmOEQKJmTfvzeMVxReE70I08IOGARE4VFx-KGYclJyLEtXHN_9PxUlKG8inQVEjzAq_3NLo-2nHTinZjt1SHwaKozdbm9gyhm4yudw-MWLLabuHrHL_DzvzyfymuLaM0r4Xw84n36_ZDY02etoyFyK7zM2V7VOI6XNx5CgTnLy8x8XDxfn94tf8-u7yavHzem6ELMd5xcFUnFB2Vkjg2JhS5WtRNi7vna1U1nS1c5VS2JJCbkB2oiyNrKSxII6LqwNvF2ijh-h3FJ90IK__FUJc6xd_WraAzgJKgqYUvGuhxtLVQkrXQhbPXF8PXEMMj5NNo96EKfZ5fc1LpUA1TV1l1LcDysSQUrTuVRVB76PRb6LJ6PqA_mvb4JLxtjf2dSJblAiNgGqfEi78mOMJ_SJM_fhf6D2j4hk1059C</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Volkov, Ivan A.</creator><creator>Simonenko, Nikolay P.</creator><creator>Efimov, Alexey A.</creator><creator>Simonenko, Tatiana L.</creator><creator>Vlasov, Ivan S.</creator><creator>Borisov, Vladislav I.</creator><creator>Arsenov, Pavel V.</creator><creator>Lebedinskii, Yuri Yu</creator><creator>Markeev, Andrey M.</creator><creator>Lizunova, Anna A.</creator><creator>Mokrushin, Artem S.</creator><creator>Simonenko, Elizaveta P.</creator><creator>Buslov, Vadim A.</creator><creator>Varfolomeev, Andrey E.</creator><creator>Liu, Zhifu</creator><creator>Vasiliev, Alexey A.</creator><creator>Ivanov, Victor V.</creator><general>Mdpi</general><general>MDPI AG</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8130-8503</orcidid><orcidid>https://orcid.org/0000-0003-1130-4969</orcidid><orcidid>https://orcid.org/0000-0002-4209-6034</orcidid><orcidid>https://orcid.org/0000-0001-8112-1821</orcidid><orcidid>https://orcid.org/0000-0001-9969-0598</orcidid><orcidid>https://orcid.org/0000-0003-3276-0277</orcidid><orcidid>https://orcid.org/0000-0002-9324-2716</orcidid><orcidid>https://orcid.org/0000-0002-2895-4696</orcidid><orcidid>https://orcid.org/0000-0001-6777-5706</orcidid><orcidid>https://orcid.org/0000-0003-4865-3054</orcidid><orcidid>https://orcid.org/0000-0002-7416-1638</orcidid><orcidid>https://orcid.org/0000-0001-7186-5050</orcidid></search><sort><creationdate>20210101</creationdate><title>Platinum Based Nanoparticles Produced by a Pulsed Spark Discharge as a Promising Material for Gas Sensors</title><author>Volkov, Ivan A. ; Simonenko, Nikolay P. ; Efimov, Alexey A. ; Simonenko, Tatiana L. ; Vlasov, Ivan S. ; Borisov, Vladislav I. ; Arsenov, Pavel V. ; Lebedinskii, Yuri Yu ; Markeev, Andrey M. ; Lizunova, Anna A. ; Mokrushin, Artem S. ; Simonenko, Elizaveta P. ; Buslov, Vadim A. ; Varfolomeev, Andrey E. ; Liu, Zhifu ; Vasiliev, Alexey A. ; Ivanov, Victor V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-520c52a16de360219c47c47e169f0002075ecd8ff5771ba712c06d344c656ce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>aerosol jet printing</topic><topic>Aerosols</topic><topic>Aluminum oxide</topic><topic>Carrier gases</topic><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Electric sparks</topic><topic>Electrodes</topic><topic>Engineering</topic><topic>Engineering, Multidisciplinary</topic><topic>Gas sensors</topic><topic>Jet printing</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Membranes</topic><topic>Metal oxide semiconductors</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nitrates</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Platinum</topic><topic>platinum-based functional ink</topic><topic>Power consumption</topic><topic>printed gas sensors</topic><topic>Pulse repetition rate</topic><topic>Science &amp; Technology</topic><topic>Sensors</topic><topic>Solvents</topic><topic>spark ablation technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volkov, Ivan A.</creatorcontrib><creatorcontrib>Simonenko, Nikolay P.</creatorcontrib><creatorcontrib>Efimov, Alexey A.</creatorcontrib><creatorcontrib>Simonenko, Tatiana L.</creatorcontrib><creatorcontrib>Vlasov, Ivan S.</creatorcontrib><creatorcontrib>Borisov, Vladislav I.</creatorcontrib><creatorcontrib>Arsenov, Pavel V.</creatorcontrib><creatorcontrib>Lebedinskii, Yuri Yu</creatorcontrib><creatorcontrib>Markeev, Andrey M.</creatorcontrib><creatorcontrib>Lizunova, Anna A.</creatorcontrib><creatorcontrib>Mokrushin, Artem S.</creatorcontrib><creatorcontrib>Simonenko, Elizaveta P.</creatorcontrib><creatorcontrib>Buslov, Vadim A.</creatorcontrib><creatorcontrib>Varfolomeev, Andrey E.</creatorcontrib><creatorcontrib>Liu, Zhifu</creatorcontrib><creatorcontrib>Vasiliev, Alexey A.</creatorcontrib><creatorcontrib>Ivanov, Victor V.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volkov, Ivan A.</au><au>Simonenko, Nikolay P.</au><au>Efimov, Alexey A.</au><au>Simonenko, Tatiana L.</au><au>Vlasov, Ivan S.</au><au>Borisov, Vladislav I.</au><au>Arsenov, Pavel V.</au><au>Lebedinskii, Yuri Yu</au><au>Markeev, Andrey M.</au><au>Lizunova, Anna A.</au><au>Mokrushin, Artem S.</au><au>Simonenko, Elizaveta P.</au><au>Buslov, Vadim A.</au><au>Varfolomeev, Andrey E.</au><au>Liu, Zhifu</au><au>Vasiliev, Alexey A.</au><au>Ivanov, Victor V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Platinum Based Nanoparticles Produced by a Pulsed Spark Discharge as a Promising Material for Gas Sensors</atitle><jtitle>Applied sciences</jtitle><stitle>APPL SCI-BASEL</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>11</volume><issue>2</issue><spage>526</spage><pages>526-</pages><artnum>526</artnum><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>We have applied spark ablation technology for producing nanoparticles from platinum ingots (purity of 99.97 wt. %) as a feed material by using air as a carrier gas. A maximum production rate of about 400 mg/h was achieved with an energy per pulse of 0.5 J and a pulse repetition rate of 250 Hz. The synthesized nanomaterial, composed of an amorphous platinum oxide PtO (83 wt. %) and a crystalline metallic platinum (17 wt. %), was used for formulating functional colloidal ink. Annealing of the deposited ink at 750 degrees C resulted in the formation of a polycrystalline material comprising 99.7 wt. % of platinum. To demonstrate the possibility of application of the formulated ink in printed electronics, we have patterned conductive lines and microheaters on alumina substrates and 20 mu m thick low-temperature co-fired ceramic (LTCC) membranes with the use of aerosol jet printing technology. The power consumption of microheaters fabricated on LTCC membranes was found to be about 140 mW at a temperature of the hot part of 500 degrees C, thus allowing one to consider these structures as promising micro-hotplates for metal oxide semiconductor (MOS) gas sensors. The catalytic activity of the synthesized nanoparticles was demonstrated by measuring the resistance transients of the non-sintered microheaters upon exposure to 2500 ppm of hydrogen.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/app11020526</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-8130-8503</orcidid><orcidid>https://orcid.org/0000-0003-1130-4969</orcidid><orcidid>https://orcid.org/0000-0002-4209-6034</orcidid><orcidid>https://orcid.org/0000-0001-8112-1821</orcidid><orcidid>https://orcid.org/0000-0001-9969-0598</orcidid><orcidid>https://orcid.org/0000-0003-3276-0277</orcidid><orcidid>https://orcid.org/0000-0002-9324-2716</orcidid><orcidid>https://orcid.org/0000-0002-2895-4696</orcidid><orcidid>https://orcid.org/0000-0001-6777-5706</orcidid><orcidid>https://orcid.org/0000-0003-4865-3054</orcidid><orcidid>https://orcid.org/0000-0002-7416-1638</orcidid><orcidid>https://orcid.org/0000-0001-7186-5050</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2021-01, Vol.11 (2), p.526, Article 526
issn 2076-3417
2076-3417
language eng
recordid cdi_webofscience_primary_000610930500001CitationCount
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals
subjects Ablation
aerosol jet printing
Aerosols
Aluminum oxide
Carrier gases
Catalytic activity
Chemistry
Chemistry, Multidisciplinary
Electric sparks
Electrodes
Engineering
Engineering, Multidisciplinary
Gas sensors
Jet printing
Low temperature
Materials Science
Materials Science, Multidisciplinary
Membranes
Metal oxide semiconductors
Nanomaterials
Nanoparticles
Nitrates
Physical Sciences
Physics
Physics, Applied
Platinum
platinum-based functional ink
Power consumption
printed gas sensors
Pulse repetition rate
Science & Technology
Sensors
Solvents
spark ablation technology
Technology
title Platinum Based Nanoparticles Produced by a Pulsed Spark Discharge as a Promising Material for Gas Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Platinum%20Based%20Nanoparticles%20Produced%20by%20a%20Pulsed%20Spark%20Discharge%20as%20a%20Promising%20Material%20for%20Gas%20Sensors&rft.jtitle=Applied%20sciences&rft.au=Volkov,%20Ivan%20A.&rft.date=2021-01-01&rft.volume=11&rft.issue=2&rft.spage=526&rft.pages=526-&rft.artnum=526&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app11020526&rft_dat=%3Cproquest_webof%3E2477079985%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477079985&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_6b01fe016a09432db0814f8366fb0602&rfr_iscdi=true