Platinum Based Nanoparticles Produced by a Pulsed Spark Discharge as a Promising Material for Gas Sensors

We have applied spark ablation technology for producing nanoparticles from platinum ingots (purity of 99.97 wt. %) as a feed material by using air as a carrier gas. A maximum production rate of about 400 mg/h was achieved with an energy per pulse of 0.5 J and a pulse repetition rate of 250 Hz. The s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-01, Vol.11 (2), p.526, Article 526
Hauptverfasser: Volkov, Ivan A., Simonenko, Nikolay P., Efimov, Alexey A., Simonenko, Tatiana L., Vlasov, Ivan S., Borisov, Vladislav I., Arsenov, Pavel V., Lebedinskii, Yuri Yu, Markeev, Andrey M., Lizunova, Anna A., Mokrushin, Artem S., Simonenko, Elizaveta P., Buslov, Vadim A., Varfolomeev, Andrey E., Liu, Zhifu, Vasiliev, Alexey A., Ivanov, Victor V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have applied spark ablation technology for producing nanoparticles from platinum ingots (purity of 99.97 wt. %) as a feed material by using air as a carrier gas. A maximum production rate of about 400 mg/h was achieved with an energy per pulse of 0.5 J and a pulse repetition rate of 250 Hz. The synthesized nanomaterial, composed of an amorphous platinum oxide PtO (83 wt. %) and a crystalline metallic platinum (17 wt. %), was used for formulating functional colloidal ink. Annealing of the deposited ink at 750 degrees C resulted in the formation of a polycrystalline material comprising 99.7 wt. % of platinum. To demonstrate the possibility of application of the formulated ink in printed electronics, we have patterned conductive lines and microheaters on alumina substrates and 20 mu m thick low-temperature co-fired ceramic (LTCC) membranes with the use of aerosol jet printing technology. The power consumption of microheaters fabricated on LTCC membranes was found to be about 140 mW at a temperature of the hot part of 500 degrees C, thus allowing one to consider these structures as promising micro-hotplates for metal oxide semiconductor (MOS) gas sensors. The catalytic activity of the synthesized nanoparticles was demonstrated by measuring the resistance transients of the non-sintered microheaters upon exposure to 2500 ppm of hydrogen.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11020526