Microstructure and Mechanical Properties of 6061 Al/AZ31 Mg Joints Friction Stir Lap Welded by a Tool with Variable-Pitch Thread Pin
Sheets of 6061-T6 aluminum alloy (thickness = 3 mm) and AZ31 magnesium alloy were friction stir lap welded by a tool with a variable-pitch thread pin (coarse-threaded in the upper part and fine-threaded in the lower part). For the same rotation speed and welding speed, the heat input was higher in j...
Gespeichert in:
Veröffentlicht in: | Metals (Basel ) 2021-01, Vol.11 (1), p.34 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sheets of 6061-T6 aluminum alloy (thickness = 3 mm) and AZ31 magnesium alloy were friction stir lap welded by a tool with a variable-pitch thread pin (coarse-threaded in the upper part and fine-threaded in the lower part). For the same rotation speed and welding speed, the heat input was higher in joints with an upper Al alloy (Configuration Al-Mg) than in those with an upper Mg alloy (Configuration Mg-Al). In Configuration Al-Mg, these two dissimilar metals were poorly mixed and Al dominated the stirred zone (SZ). Many intermetallic compounds (IMCs) of Al3Mg2 formed inside the SZ. In Configuration Mg-Al, Mg alloy bands, flocculent Al12Mg17 bands, and minor Al alloy bands intersected in the SZ, forming a complex onion-ring structure. Moreover, a complex mechanical interlocking structure developed at the bottom interface of the SZ. The maximum tensile shear strengths of the Al-Mg and Mg-Al lap configurations were 160.3 and 217 N/mm, respectively, at 700 rpm. The higher tensile shear strength of the Mg-Al configuration primarily represented less IMCs and complex mechanical interlocking structures in the SZ. |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met11010034 |