Monitoring sick leave data for early detection of influenza outbreaks

BackgroundWorkplace absenteeism increases significantly during influenza epidemics. Sick leave records may facilitate more timely detection of influenza outbreaks, as trends in increased sick leave may precede alerts issued by sentinel surveillance systems by days or weeks. Sick leave data have not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC infectious diseases 2021-01, Vol.21 (1), p.52-52, Article 52
Hauptverfasser: Duchemin, Tom, Bastard, Jonathan, Ante-Testard, Pearl Anne, Assab, Rania, Daouda, Oumou Salama, Duval, Audrey, Garsi, Jerome-Philippe, Lounissi, Radowan, Nekkab, Narimane, Neynaud, Helene, Smith, David R. M., Dab, William, Jean, Kevin, Temime, Laura, Hocine, Mounia N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue 1
container_start_page 52
container_title BMC infectious diseases
container_volume 21
creator Duchemin, Tom
Bastard, Jonathan
Ante-Testard, Pearl Anne
Assab, Rania
Daouda, Oumou Salama
Duval, Audrey
Garsi, Jerome-Philippe
Lounissi, Radowan
Nekkab, Narimane
Neynaud, Helene
Smith, David R. M.
Dab, William
Jean, Kevin
Temime, Laura
Hocine, Mounia N.
description BackgroundWorkplace absenteeism increases significantly during influenza epidemics. Sick leave records may facilitate more timely detection of influenza outbreaks, as trends in increased sick leave may precede alerts issued by sentinel surveillance systems by days or weeks. Sick leave data have not been comprehensively evaluated in comparison to traditional surveillance methods. The aim of this paper is to study the performance and the feasibility of using a detection system based on sick leave data to detect influenza outbreaks.MethodsSick leave records were extracted from private French health insurance data, covering on average 209,932 companies per year across a wide range of sizes and sectors. We used linear regression to estimate the weekly number of new sick leave spells between 2016 and 2017 in 12 French regions, adjusting for trend, seasonality and worker leaves on historical data from 2010 to 2015. Outbreaks were detected using a 95%-prediction interval. This method was compared to results from the French Sentinelles network, a gold-standard primary care surveillance system currently in place.ResultsUsing sick leave data, we detected 92% of reported influenza outbreaks between 2016 and 2017, on average 5.88weeks prior to outbreak peaks. Compared to the existing Sentinelles model, our method had high sensitivity (89%) and positive predictive value (86%), and detected outbreaks on average 2.5weeks earlier.ConclusionSick leave surveillance could be a sensitive, specific and timely tool for detection of influenza outbreaks.
doi_str_mv 10.1186/s12879-020-05754-5
format Article
fullrecord <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_webofscience_primary_000609524500007CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A653676913</galeid><doaj_id>oai_doaj_org_article_b14f5588ccae4a0893e97f23efd57635</doaj_id><sourcerecordid>A653676913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c665t-7c2e03b2df646b41a798c3bf367837074804056c9d6d65b59c91b2c0ed01e7ce3</originalsourceid><addsrcrecordid>eNqNkl1PFTEQhjdGI4j-AS_MJt5IzGK_P25MyAkKCYbEr9um2509FPZsse2i-OvtchA5xAvSizbTZ95OZ96qeonRHsZKvEuYKKkbRFCDuOSs4Y-qbcwkbgil7PGd81b1LKUzhLBURD-ttkqIIqnpdnXwKYw-h-jHZZ28O68HsJdQdzbbug-xBhuHq7qDDC77MNahr_3YDxOMv20dptxGsOfpefWkt0OCFzf7TvXtw8HXxWFzfPLxaLF_3DgheG6kI4BoS7peMNEybKVWjrY9FVJRiSRTiCEunO5EJ3jLtdO4JQ5BhzBIB3SnOlrrdsGemYvoVzZemWC9uQ6EuDQ2Zu8GMC1mPedKOWeBWaQ0BS17QqHvuBSUF633a62LqV1B52DM0Q4bops3oz81y3BppNSaIVoEdtcCp_fSDvePzRxDFGPGKbkkhX1z81gMPyZI2ax8cjAMdoQwJUOYlIQrKVFBX99Dz8IUx9LWmVKSK0TIP2ppy2fLSEKp0c2iZl_w0lCh8Vzi3n-osjpYeRdG6H2JbyTsbiQUJsOvvLRTSuboy-eHsyffN1myZl0MKUXobxuGkZnNbNZmNsXM5trMZp7Qq7sTuk35694CvF0DP6ENfXIeRge3GEJIIM0J4-WEZKHVw-mFz3Y2_CJMY6Z_AOC1C2k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478758022</pqid></control><display><type>article</type><title>Monitoring sick leave data for early detection of influenza outbreaks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Web of Science - Social Sciences Citation Index – 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Springer Nature OA/Free Journals</source><creator>Duchemin, Tom ; Bastard, Jonathan ; Ante-Testard, Pearl Anne ; Assab, Rania ; Daouda, Oumou Salama ; Duval, Audrey ; Garsi, Jerome-Philippe ; Lounissi, Radowan ; Nekkab, Narimane ; Neynaud, Helene ; Smith, David R. M. ; Dab, William ; Jean, Kevin ; Temime, Laura ; Hocine, Mounia N.</creator><creatorcontrib>Duchemin, Tom ; Bastard, Jonathan ; Ante-Testard, Pearl Anne ; Assab, Rania ; Daouda, Oumou Salama ; Duval, Audrey ; Garsi, Jerome-Philippe ; Lounissi, Radowan ; Nekkab, Narimane ; Neynaud, Helene ; Smith, David R. M. ; Dab, William ; Jean, Kevin ; Temime, Laura ; Hocine, Mounia N.</creatorcontrib><description>BackgroundWorkplace absenteeism increases significantly during influenza epidemics. Sick leave records may facilitate more timely detection of influenza outbreaks, as trends in increased sick leave may precede alerts issued by sentinel surveillance systems by days or weeks. Sick leave data have not been comprehensively evaluated in comparison to traditional surveillance methods. The aim of this paper is to study the performance and the feasibility of using a detection system based on sick leave data to detect influenza outbreaks.MethodsSick leave records were extracted from private French health insurance data, covering on average 209,932 companies per year across a wide range of sizes and sectors. We used linear regression to estimate the weekly number of new sick leave spells between 2016 and 2017 in 12 French regions, adjusting for trend, seasonality and worker leaves on historical data from 2010 to 2015. Outbreaks were detected using a 95%-prediction interval. This method was compared to results from the French Sentinelles network, a gold-standard primary care surveillance system currently in place.ResultsUsing sick leave data, we detected 92% of reported influenza outbreaks between 2016 and 2017, on average 5.88weeks prior to outbreak peaks. Compared to the existing Sentinelles model, our method had high sensitivity (89%) and positive predictive value (86%), and detected outbreaks on average 2.5weeks earlier.ConclusionSick leave surveillance could be a sensitive, specific and timely tool for detection of influenza outbreaks.</description><identifier>ISSN: 1471-2334</identifier><identifier>EISSN: 1471-2334</identifier><identifier>DOI: 10.1186/s12879-020-05754-5</identifier><identifier>PMID: 33430793</identifier><language>eng</language><publisher>LONDON: Springer Nature</publisher><subject>Absenteeism ; Algorithms ; Care and treatment ; Control ; Diagnosis ; Emergency communications systems ; Employee benefits ; Epidemics ; Evaluation ; France ; France - epidemiology ; Health care ; Health insurance ; Health surveillance ; Historical account ; Human health and pathology ; Humans ; Incidence ; Infection control ; Infectious Diseases ; Influenza ; Influenza, Human - epidemiology ; Influenza, Human - virology ; Insurance, Health ; Life Sciences ; Life Sciences &amp; Biomedicine ; Management ; Methodology ; Middle Aged ; Models, Statistical ; Outbreak detection ; Outbreaks ; Public Health Surveillance - methods ; Retrospective Studies ; Santé publique et épidémiologie ; Science &amp; Technology ; Seasonal variations ; Sensitivity and Specificity ; Sentinel Surveillance ; Sick Leave ; Statistics ; Surveillance ; Surveillance systems ; Workers ; Workplace</subject><ispartof>BMC infectious diseases, 2021-01, Vol.21 (1), p.52-52, Article 52</ispartof><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>6</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000609524500007</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c665t-7c2e03b2df646b41a798c3bf367837074804056c9d6d65b59c91b2c0ed01e7ce3</citedby><cites>FETCH-LOGICAL-c665t-7c2e03b2df646b41a798c3bf367837074804056c9d6d65b59c91b2c0ed01e7ce3</cites><orcidid>0000-0002-8850-5403 ; 0000-0002-9131-8705 ; 0000-0002-7330-4262 ; 0000-0001-6462-7185 ; 0000-0001-8531-1614 ; 0000-0003-0942-7441 ; 0000-0001-7778-7137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7799403/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7799403/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,39264,39265,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33430793$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03114532$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Duchemin, Tom</creatorcontrib><creatorcontrib>Bastard, Jonathan</creatorcontrib><creatorcontrib>Ante-Testard, Pearl Anne</creatorcontrib><creatorcontrib>Assab, Rania</creatorcontrib><creatorcontrib>Daouda, Oumou Salama</creatorcontrib><creatorcontrib>Duval, Audrey</creatorcontrib><creatorcontrib>Garsi, Jerome-Philippe</creatorcontrib><creatorcontrib>Lounissi, Radowan</creatorcontrib><creatorcontrib>Nekkab, Narimane</creatorcontrib><creatorcontrib>Neynaud, Helene</creatorcontrib><creatorcontrib>Smith, David R. M.</creatorcontrib><creatorcontrib>Dab, William</creatorcontrib><creatorcontrib>Jean, Kevin</creatorcontrib><creatorcontrib>Temime, Laura</creatorcontrib><creatorcontrib>Hocine, Mounia N.</creatorcontrib><title>Monitoring sick leave data for early detection of influenza outbreaks</title><title>BMC infectious diseases</title><addtitle>BMC INFECT DIS</addtitle><addtitle>BMC Infect Dis</addtitle><description>BackgroundWorkplace absenteeism increases significantly during influenza epidemics. Sick leave records may facilitate more timely detection of influenza outbreaks, as trends in increased sick leave may precede alerts issued by sentinel surveillance systems by days or weeks. Sick leave data have not been comprehensively evaluated in comparison to traditional surveillance methods. The aim of this paper is to study the performance and the feasibility of using a detection system based on sick leave data to detect influenza outbreaks.MethodsSick leave records were extracted from private French health insurance data, covering on average 209,932 companies per year across a wide range of sizes and sectors. We used linear regression to estimate the weekly number of new sick leave spells between 2016 and 2017 in 12 French regions, adjusting for trend, seasonality and worker leaves on historical data from 2010 to 2015. Outbreaks were detected using a 95%-prediction interval. This method was compared to results from the French Sentinelles network, a gold-standard primary care surveillance system currently in place.ResultsUsing sick leave data, we detected 92% of reported influenza outbreaks between 2016 and 2017, on average 5.88weeks prior to outbreak peaks. Compared to the existing Sentinelles model, our method had high sensitivity (89%) and positive predictive value (86%), and detected outbreaks on average 2.5weeks earlier.ConclusionSick leave surveillance could be a sensitive, specific and timely tool for detection of influenza outbreaks.</description><subject>Absenteeism</subject><subject>Algorithms</subject><subject>Care and treatment</subject><subject>Control</subject><subject>Diagnosis</subject><subject>Emergency communications systems</subject><subject>Employee benefits</subject><subject>Epidemics</subject><subject>Evaluation</subject><subject>France</subject><subject>France - epidemiology</subject><subject>Health care</subject><subject>Health insurance</subject><subject>Health surveillance</subject><subject>Historical account</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Incidence</subject><subject>Infection control</subject><subject>Infectious Diseases</subject><subject>Influenza</subject><subject>Influenza, Human - epidemiology</subject><subject>Influenza, Human - virology</subject><subject>Insurance, Health</subject><subject>Life Sciences</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Management</subject><subject>Methodology</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>Outbreak detection</subject><subject>Outbreaks</subject><subject>Public Health Surveillance - methods</subject><subject>Retrospective Studies</subject><subject>Santé publique et épidémiologie</subject><subject>Science &amp; Technology</subject><subject>Seasonal variations</subject><subject>Sensitivity and Specificity</subject><subject>Sentinel Surveillance</subject><subject>Sick Leave</subject><subject>Statistics</subject><subject>Surveillance</subject><subject>Surveillance systems</subject><subject>Workers</subject><subject>Workplace</subject><issn>1471-2334</issn><issn>1471-2334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>GIZIO</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1PFTEQhjdGI4j-AS_MJt5IzGK_P25MyAkKCYbEr9um2509FPZsse2i-OvtchA5xAvSizbTZ95OZ96qeonRHsZKvEuYKKkbRFCDuOSs4Y-qbcwkbgil7PGd81b1LKUzhLBURD-ttkqIIqnpdnXwKYw-h-jHZZ28O68HsJdQdzbbug-xBhuHq7qDDC77MNahr_3YDxOMv20dptxGsOfpefWkt0OCFzf7TvXtw8HXxWFzfPLxaLF_3DgheG6kI4BoS7peMNEybKVWjrY9FVJRiSRTiCEunO5EJ3jLtdO4JQ5BhzBIB3SnOlrrdsGemYvoVzZemWC9uQ6EuDQ2Zu8GMC1mPedKOWeBWaQ0BS17QqHvuBSUF633a62LqV1B52DM0Q4bops3oz81y3BppNSaIVoEdtcCp_fSDvePzRxDFGPGKbkkhX1z81gMPyZI2ax8cjAMdoQwJUOYlIQrKVFBX99Dz8IUx9LWmVKSK0TIP2ppy2fLSEKp0c2iZl_w0lCh8Vzi3n-osjpYeRdG6H2JbyTsbiQUJsOvvLRTSuboy-eHsyffN1myZl0MKUXobxuGkZnNbNZmNsXM5trMZp7Qq7sTuk35694CvF0DP6ENfXIeRge3GEJIIM0J4-WEZKHVw-mFz3Y2_CJMY6Z_AOC1C2k</recordid><startdate>20210111</startdate><enddate>20210111</enddate><creator>Duchemin, Tom</creator><creator>Bastard, Jonathan</creator><creator>Ante-Testard, Pearl Anne</creator><creator>Assab, Rania</creator><creator>Daouda, Oumou Salama</creator><creator>Duval, Audrey</creator><creator>Garsi, Jerome-Philippe</creator><creator>Lounissi, Radowan</creator><creator>Nekkab, Narimane</creator><creator>Neynaud, Helene</creator><creator>Smith, David R. M.</creator><creator>Dab, William</creator><creator>Jean, Kevin</creator><creator>Temime, Laura</creator><creator>Hocine, Mounia N.</creator><general>Springer Nature</general><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>17B</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>GIZIO</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T2</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8850-5403</orcidid><orcidid>https://orcid.org/0000-0002-9131-8705</orcidid><orcidid>https://orcid.org/0000-0002-7330-4262</orcidid><orcidid>https://orcid.org/0000-0001-6462-7185</orcidid><orcidid>https://orcid.org/0000-0001-8531-1614</orcidid><orcidid>https://orcid.org/0000-0003-0942-7441</orcidid><orcidid>https://orcid.org/0000-0001-7778-7137</orcidid></search><sort><creationdate>20210111</creationdate><title>Monitoring sick leave data for early detection of influenza outbreaks</title><author>Duchemin, Tom ; Bastard, Jonathan ; Ante-Testard, Pearl Anne ; Assab, Rania ; Daouda, Oumou Salama ; Duval, Audrey ; Garsi, Jerome-Philippe ; Lounissi, Radowan ; Nekkab, Narimane ; Neynaud, Helene ; Smith, David R. M. ; Dab, William ; Jean, Kevin ; Temime, Laura ; Hocine, Mounia N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c665t-7c2e03b2df646b41a798c3bf367837074804056c9d6d65b59c91b2c0ed01e7ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absenteeism</topic><topic>Algorithms</topic><topic>Care and treatment</topic><topic>Control</topic><topic>Diagnosis</topic><topic>Emergency communications systems</topic><topic>Employee benefits</topic><topic>Epidemics</topic><topic>Evaluation</topic><topic>France</topic><topic>France - epidemiology</topic><topic>Health care</topic><topic>Health insurance</topic><topic>Health surveillance</topic><topic>Historical account</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Incidence</topic><topic>Infection control</topic><topic>Infectious Diseases</topic><topic>Influenza</topic><topic>Influenza, Human - epidemiology</topic><topic>Influenza, Human - virology</topic><topic>Insurance, Health</topic><topic>Life Sciences</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Management</topic><topic>Methodology</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>Outbreak detection</topic><topic>Outbreaks</topic><topic>Public Health Surveillance - methods</topic><topic>Retrospective Studies</topic><topic>Santé publique et épidémiologie</topic><topic>Science &amp; Technology</topic><topic>Seasonal variations</topic><topic>Sensitivity and Specificity</topic><topic>Sentinel Surveillance</topic><topic>Sick Leave</topic><topic>Statistics</topic><topic>Surveillance</topic><topic>Surveillance systems</topic><topic>Workers</topic><topic>Workplace</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duchemin, Tom</creatorcontrib><creatorcontrib>Bastard, Jonathan</creatorcontrib><creatorcontrib>Ante-Testard, Pearl Anne</creatorcontrib><creatorcontrib>Assab, Rania</creatorcontrib><creatorcontrib>Daouda, Oumou Salama</creatorcontrib><creatorcontrib>Duval, Audrey</creatorcontrib><creatorcontrib>Garsi, Jerome-Philippe</creatorcontrib><creatorcontrib>Lounissi, Radowan</creatorcontrib><creatorcontrib>Nekkab, Narimane</creatorcontrib><creatorcontrib>Neynaud, Helene</creatorcontrib><creatorcontrib>Smith, David R. M.</creatorcontrib><creatorcontrib>Dab, William</creatorcontrib><creatorcontrib>Jean, Kevin</creatorcontrib><creatorcontrib>Temime, Laura</creatorcontrib><creatorcontrib>Hocine, Mounia N.</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI &amp; AHCI)</collection><collection>Web of Science - Social Sciences Citation Index – 2021</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC infectious diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duchemin, Tom</au><au>Bastard, Jonathan</au><au>Ante-Testard, Pearl Anne</au><au>Assab, Rania</au><au>Daouda, Oumou Salama</au><au>Duval, Audrey</au><au>Garsi, Jerome-Philippe</au><au>Lounissi, Radowan</au><au>Nekkab, Narimane</au><au>Neynaud, Helene</au><au>Smith, David R. M.</au><au>Dab, William</au><au>Jean, Kevin</au><au>Temime, Laura</au><au>Hocine, Mounia N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring sick leave data for early detection of influenza outbreaks</atitle><jtitle>BMC infectious diseases</jtitle><stitle>BMC INFECT DIS</stitle><addtitle>BMC Infect Dis</addtitle><date>2021-01-11</date><risdate>2021</risdate><volume>21</volume><issue>1</issue><spage>52</spage><epage>52</epage><pages>52-52</pages><artnum>52</artnum><issn>1471-2334</issn><eissn>1471-2334</eissn><abstract>BackgroundWorkplace absenteeism increases significantly during influenza epidemics. Sick leave records may facilitate more timely detection of influenza outbreaks, as trends in increased sick leave may precede alerts issued by sentinel surveillance systems by days or weeks. Sick leave data have not been comprehensively evaluated in comparison to traditional surveillance methods. The aim of this paper is to study the performance and the feasibility of using a detection system based on sick leave data to detect influenza outbreaks.MethodsSick leave records were extracted from private French health insurance data, covering on average 209,932 companies per year across a wide range of sizes and sectors. We used linear regression to estimate the weekly number of new sick leave spells between 2016 and 2017 in 12 French regions, adjusting for trend, seasonality and worker leaves on historical data from 2010 to 2015. Outbreaks were detected using a 95%-prediction interval. This method was compared to results from the French Sentinelles network, a gold-standard primary care surveillance system currently in place.ResultsUsing sick leave data, we detected 92% of reported influenza outbreaks between 2016 and 2017, on average 5.88weeks prior to outbreak peaks. Compared to the existing Sentinelles model, our method had high sensitivity (89%) and positive predictive value (86%), and detected outbreaks on average 2.5weeks earlier.ConclusionSick leave surveillance could be a sensitive, specific and timely tool for detection of influenza outbreaks.</abstract><cop>LONDON</cop><pub>Springer Nature</pub><pmid>33430793</pmid><doi>10.1186/s12879-020-05754-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8850-5403</orcidid><orcidid>https://orcid.org/0000-0002-9131-8705</orcidid><orcidid>https://orcid.org/0000-0002-7330-4262</orcidid><orcidid>https://orcid.org/0000-0001-6462-7185</orcidid><orcidid>https://orcid.org/0000-0001-8531-1614</orcidid><orcidid>https://orcid.org/0000-0003-0942-7441</orcidid><orcidid>https://orcid.org/0000-0001-7778-7137</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2334
ispartof BMC infectious diseases, 2021-01, Vol.21 (1), p.52-52, Article 52
issn 1471-2334
1471-2334
language eng
recordid cdi_webofscience_primary_000609524500007CitationCount
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Springer Nature OA/Free Journals
subjects Absenteeism
Algorithms
Care and treatment
Control
Diagnosis
Emergency communications systems
Employee benefits
Epidemics
Evaluation
France
France - epidemiology
Health care
Health insurance
Health surveillance
Historical account
Human health and pathology
Humans
Incidence
Infection control
Infectious Diseases
Influenza
Influenza, Human - epidemiology
Influenza, Human - virology
Insurance, Health
Life Sciences
Life Sciences & Biomedicine
Management
Methodology
Middle Aged
Models, Statistical
Outbreak detection
Outbreaks
Public Health Surveillance - methods
Retrospective Studies
Santé publique et épidémiologie
Science & Technology
Seasonal variations
Sensitivity and Specificity
Sentinel Surveillance
Sick Leave
Statistics
Surveillance
Surveillance systems
Workers
Workplace
title Monitoring sick leave data for early detection of influenza outbreaks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T17%3A00%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20sick%20leave%20data%20for%20early%20detection%20of%20influenza%20outbreaks&rft.jtitle=BMC%20infectious%20diseases&rft.au=Duchemin,%20Tom&rft.date=2021-01-11&rft.volume=21&rft.issue=1&rft.spage=52&rft.epage=52&rft.pages=52-52&rft.artnum=52&rft.issn=1471-2334&rft.eissn=1471-2334&rft_id=info:doi/10.1186/s12879-020-05754-5&rft_dat=%3Cgale_webof%3EA653676913%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478758022&rft_id=info:pmid/33430793&rft_galeid=A653676913&rft_doaj_id=oai_doaj_org_article_b14f5588ccae4a0893e97f23efd57635&rfr_iscdi=true