Lithium source for focused ion beam implantation and analysis

We present a new Li source for focused ion beam applications. Based on an AuSi eutectic alloy, Li is added as an impurity to minimize effects from degradation when exposed to air. We show the source is stable over the course of an hour and spot sizes ≲ 10 nm can be achieved. The Li beam can achieve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vacuum science and technology. B, Nanotechnology & microelectronics Nanotechnology & microelectronics, 2021-01, Vol.39 (1)
Hauptverfasser: Titze, Michael, Perry, Daniel L., Auden, Elizabeth A., Pacheco, Jose L., Abraham, John B. S., Bielejec, Edward S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new Li source for focused ion beam applications. Based on an AuSi eutectic alloy, Li is added as an impurity to minimize effects from degradation when exposed to air. We show the source is stable over the course of an hour and spot sizes ≲ 10 nm can be achieved. The Li beam can achieve hundreds of nanometer ranges in semiconductors with minimal damage being generated along the path length. The source performance is evaluated through a high-resolution ion beam induced charge collection experiment on an Si-based detector. Further application of the source for ion beam analysis is numerically explored; the example investigated is based on probing a semiconductor heterostructure through a Rutherford backscattering experiment, where the Li beam can reveal information that is inaccessible with either low energy or high energy He projectiles used as probes.
ISSN:2166-2746
2166-2754
DOI:10.1116/6.0000645