Phosphatidic acid increases Notch signalling by affecting Sanpodo trafficking during Drosophila sensory organ development
Organ cell diversity depends on binary cell-fate decisions mediated by the Notch signalling pathway during development and tissue homeostasis. A clear example is the series of binary cell-fate decisions that take place during asymmetric cell divisions that give rise to the sensory organs of Drosophi...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-12, Vol.10 (1), p.21731-21731, Article 21731 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21731 |
---|---|
container_issue | 1 |
container_start_page | 21731 |
container_title | Scientific reports |
container_volume | 10 |
creator | Medina-Yáñez, Ignacio Olivares, Gonzalo H. Vega-Macaya, Franco Mlodzik, Marek Olguín, Patricio |
description | Organ cell diversity depends on binary cell-fate decisions mediated by the Notch signalling pathway during development and tissue homeostasis. A clear example is the series of binary cell-fate decisions that take place during asymmetric cell divisions that give rise to the sensory organs of
Drosophila melanogaster
. The regulated trafficking of Sanpodo, a transmembrane protein that potentiates receptor activity, plays a pivotal role in this process. Membrane lipids can regulate many signalling pathways by affecting receptor and ligand trafficking. It remains unknown, however, whether phosphatidic acid regulates Notch-mediated binary cell-fate decisions during asymmetric cell divisions, and what are the cellular mechanisms involved. Here we show that increased phosphatidic acid derived from Phospholipase D leads to defects in binary cell-fate decisions that are compatible with ectopic Notch activation in precursor cells, where it is normally inactive. Null mutants of
numb
or the
α-subunit of Adaptor Protein complex-2
enhance dominantly this phenotype while removing a copy of
Notch
or
sanpodo
suppresses it. In vivo analyses show that Sanpodo localization decreases at acidic compartments, associated with increased internalization of Notch. We propose that Phospholipase D-derived phosphatidic acid promotes ectopic Notch signalling by increasing receptor endocytosis and inhibiting Sanpodo trafficking towards acidic endosomes. |
doi_str_mv | 10.1038/s41598-020-78831-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000609195000087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f18663aa686d425ca097bcd249292927</doaj_id><sourcerecordid>2470278047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-af9dbbce9cfcf66a47d473ad8353ec78499ccf89e80f37601e0277c6a928025c3</originalsourceid><addsrcrecordid>eNqNUk1v1DAUjBCIVqV_gAOKxAUJBRzbie0LElq-KlWABJytF3_sesnawU6Ktr8eZ1OWlgPCPjh-npnMs6coHtfoRY0If5lo3QheIYwqxjmpq-t7xSlGtKkwwfj-re-T4jylLcqjwYLW4mFxQghBRDB6Wuw_b0IaNjA67VQJyunSeRUNJJPKj2FUmzK5tYe-d35ddvsSrDVqnDdfwA9Bh3KMuebU97mmpzgvb2JIYdi4HspkfApxX4a4Bl9qc2X6MOyMHx8VDyz0yZzfrGfFt3dvv64-VJef3l-sXl9WqmFsrMAK3XXKCGWVbVugTFNGQHPSEKMYp0IoZbkwHFnCWlQbhBlTLQjMEW4UOSsuFl0dYCuH6HYQ9zKAk4dC9iUhjk71Rtqaty0BaHmraeYCEqxTGlOB58my1qtFa5i6ndEqtxGhvyN698S7jVyHK8kYFtlQFnh2IxDDj8mkUe5cUqbvwZswJYkpy_Y5ovO_nv4F3YYp5pc4oAgWTU1pRuEFpfKVp2js0UyN5BwUuQRF5qDIQ1DkdSY9ud3GkfI7FhnwfAH8NF2wSTnjlTnCcpJaJGrRzJnis1P-_-iVG3PYgl-FyY-ZShZqGubgmPinyX_4_wXg1uzp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473295144</pqid></control><display><type>article</type><title>Phosphatidic acid increases Notch signalling by affecting Sanpodo trafficking during Drosophila sensory organ development</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Medina-Yáñez, Ignacio ; Olivares, Gonzalo H. ; Vega-Macaya, Franco ; Mlodzik, Marek ; Olguín, Patricio</creator><creatorcontrib>Medina-Yáñez, Ignacio ; Olivares, Gonzalo H. ; Vega-Macaya, Franco ; Mlodzik, Marek ; Olguín, Patricio</creatorcontrib><description>Organ cell diversity depends on binary cell-fate decisions mediated by the Notch signalling pathway during development and tissue homeostasis. A clear example is the series of binary cell-fate decisions that take place during asymmetric cell divisions that give rise to the sensory organs of
Drosophila melanogaster
. The regulated trafficking of Sanpodo, a transmembrane protein that potentiates receptor activity, plays a pivotal role in this process. Membrane lipids can regulate many signalling pathways by affecting receptor and ligand trafficking. It remains unknown, however, whether phosphatidic acid regulates Notch-mediated binary cell-fate decisions during asymmetric cell divisions, and what are the cellular mechanisms involved. Here we show that increased phosphatidic acid derived from Phospholipase D leads to defects in binary cell-fate decisions that are compatible with ectopic Notch activation in precursor cells, where it is normally inactive. Null mutants of
numb
or the
α-subunit of Adaptor Protein complex-2
enhance dominantly this phenotype while removing a copy of
Notch
or
sanpodo
suppresses it. In vivo analyses show that Sanpodo localization decreases at acidic compartments, associated with increased internalization of Notch. We propose that Phospholipase D-derived phosphatidic acid promotes ectopic Notch signalling by increasing receptor endocytosis and inhibiting Sanpodo trafficking towards acidic endosomes.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-78831-z</identifier><identifier>PMID: 33303974</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/136 ; 631/136/142 ; 631/208 ; 631/208/135 ; 631/208/2490 ; 631/80 ; 631/80/313 ; 631/80/86 ; 631/80/86/2365 ; 631/80/86/820 ; Acids ; Adaptor Protein Complex 2 - physiology ; Animals ; Asymmetric Cell Division ; Cell activation ; Drosophila - cytology ; Drosophila - embryology ; Drosophila - genetics ; Drosophila Proteins - metabolism ; Drosophila Proteins - physiology ; Endocytosis ; Endocytosis - physiology ; Endosomes ; Endosomes - metabolism ; Female ; Homeostasis ; Humanities and Social Sciences ; Insects ; Internalization ; Juvenile Hormones - physiology ; Lipids ; Localization ; Mechanoreceptors - physiology ; Microfilament Proteins - metabolism ; multidisciplinary ; Multidisciplinary Sciences ; Organogenesis - drug effects ; Organogenesis - genetics ; Phenotypes ; Phosphatidic acid ; Phosphatidic Acids - pharmacology ; Phospholipase D ; Protein transport ; Protein Transport - genetics ; Receptors, Notch - metabolism ; Science ; Science & Technology ; Science & Technology - Other Topics ; Science (multidisciplinary) ; Sense organs ; Signal transduction ; Signal Transduction - drug effects</subject><ispartof>Scientific reports, 2020-12, Vol.10 (1), p.21731-21731, Article 21731</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000609195000087</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c577t-af9dbbce9cfcf66a47d473ad8353ec78499ccf89e80f37601e0277c6a928025c3</citedby><cites>FETCH-LOGICAL-c577t-af9dbbce9cfcf66a47d473ad8353ec78499ccf89e80f37601e0277c6a928025c3</cites><orcidid>0000-0002-2784-0160 ; 0000-0002-8847-4969 ; 0000-0002-2033-7175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729928/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729928/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,28253,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33303974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Medina-Yáñez, Ignacio</creatorcontrib><creatorcontrib>Olivares, Gonzalo H.</creatorcontrib><creatorcontrib>Vega-Macaya, Franco</creatorcontrib><creatorcontrib>Mlodzik, Marek</creatorcontrib><creatorcontrib>Olguín, Patricio</creatorcontrib><title>Phosphatidic acid increases Notch signalling by affecting Sanpodo trafficking during Drosophila sensory organ development</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>SCI REP-UK</addtitle><addtitle>Sci Rep</addtitle><description>Organ cell diversity depends on binary cell-fate decisions mediated by the Notch signalling pathway during development and tissue homeostasis. A clear example is the series of binary cell-fate decisions that take place during asymmetric cell divisions that give rise to the sensory organs of
Drosophila melanogaster
. The regulated trafficking of Sanpodo, a transmembrane protein that potentiates receptor activity, plays a pivotal role in this process. Membrane lipids can regulate many signalling pathways by affecting receptor and ligand trafficking. It remains unknown, however, whether phosphatidic acid regulates Notch-mediated binary cell-fate decisions during asymmetric cell divisions, and what are the cellular mechanisms involved. Here we show that increased phosphatidic acid derived from Phospholipase D leads to defects in binary cell-fate decisions that are compatible with ectopic Notch activation in precursor cells, where it is normally inactive. Null mutants of
numb
or the
α-subunit of Adaptor Protein complex-2
enhance dominantly this phenotype while removing a copy of
Notch
or
sanpodo
suppresses it. In vivo analyses show that Sanpodo localization decreases at acidic compartments, associated with increased internalization of Notch. We propose that Phospholipase D-derived phosphatidic acid promotes ectopic Notch signalling by increasing receptor endocytosis and inhibiting Sanpodo trafficking towards acidic endosomes.</description><subject>631/136</subject><subject>631/136/142</subject><subject>631/208</subject><subject>631/208/135</subject><subject>631/208/2490</subject><subject>631/80</subject><subject>631/80/313</subject><subject>631/80/86</subject><subject>631/80/86/2365</subject><subject>631/80/86/820</subject><subject>Acids</subject><subject>Adaptor Protein Complex 2 - physiology</subject><subject>Animals</subject><subject>Asymmetric Cell Division</subject><subject>Cell activation</subject><subject>Drosophila - cytology</subject><subject>Drosophila - embryology</subject><subject>Drosophila - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Drosophila Proteins - physiology</subject><subject>Endocytosis</subject><subject>Endocytosis - physiology</subject><subject>Endosomes</subject><subject>Endosomes - metabolism</subject><subject>Female</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Insects</subject><subject>Internalization</subject><subject>Juvenile Hormones - physiology</subject><subject>Lipids</subject><subject>Localization</subject><subject>Mechanoreceptors - physiology</subject><subject>Microfilament Proteins - metabolism</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Organogenesis - drug effects</subject><subject>Organogenesis - genetics</subject><subject>Phenotypes</subject><subject>Phosphatidic acid</subject><subject>Phosphatidic Acids - pharmacology</subject><subject>Phospholipase D</subject><subject>Protein transport</subject><subject>Protein Transport - genetics</subject><subject>Receptors, Notch - metabolism</subject><subject>Science</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Sense organs</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNUk1v1DAUjBCIVqV_gAOKxAUJBRzbie0LElq-KlWABJytF3_sesnawU6Ktr8eZ1OWlgPCPjh-npnMs6coHtfoRY0If5lo3QheIYwqxjmpq-t7xSlGtKkwwfj-re-T4jylLcqjwYLW4mFxQghBRDB6Wuw_b0IaNjA67VQJyunSeRUNJJPKj2FUmzK5tYe-d35ddvsSrDVqnDdfwA9Bh3KMuebU97mmpzgvb2JIYdi4HspkfApxX4a4Bl9qc2X6MOyMHx8VDyz0yZzfrGfFt3dvv64-VJef3l-sXl9WqmFsrMAK3XXKCGWVbVugTFNGQHPSEKMYp0IoZbkwHFnCWlQbhBlTLQjMEW4UOSsuFl0dYCuH6HYQ9zKAk4dC9iUhjk71Rtqaty0BaHmraeYCEqxTGlOB58my1qtFa5i6ndEqtxGhvyN698S7jVyHK8kYFtlQFnh2IxDDj8mkUe5cUqbvwZswJYkpy_Y5ovO_nv4F3YYp5pc4oAgWTU1pRuEFpfKVp2js0UyN5BwUuQRF5qDIQ1DkdSY9ud3GkfI7FhnwfAH8NF2wSTnjlTnCcpJaJGrRzJnis1P-_-iVG3PYgl-FyY-ZShZqGubgmPinyX_4_wXg1uzp</recordid><startdate>20201210</startdate><enddate>20201210</enddate><creator>Medina-Yáñez, Ignacio</creator><creator>Olivares, Gonzalo H.</creator><creator>Vega-Macaya, Franco</creator><creator>Mlodzik, Marek</creator><creator>Olguín, Patricio</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2784-0160</orcidid><orcidid>https://orcid.org/0000-0002-8847-4969</orcidid><orcidid>https://orcid.org/0000-0002-2033-7175</orcidid></search><sort><creationdate>20201210</creationdate><title>Phosphatidic acid increases Notch signalling by affecting Sanpodo trafficking during Drosophila sensory organ development</title><author>Medina-Yáñez, Ignacio ; Olivares, Gonzalo H. ; Vega-Macaya, Franco ; Mlodzik, Marek ; Olguín, Patricio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-af9dbbce9cfcf66a47d473ad8353ec78499ccf89e80f37601e0277c6a928025c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/136</topic><topic>631/136/142</topic><topic>631/208</topic><topic>631/208/135</topic><topic>631/208/2490</topic><topic>631/80</topic><topic>631/80/313</topic><topic>631/80/86</topic><topic>631/80/86/2365</topic><topic>631/80/86/820</topic><topic>Acids</topic><topic>Adaptor Protein Complex 2 - physiology</topic><topic>Animals</topic><topic>Asymmetric Cell Division</topic><topic>Cell activation</topic><topic>Drosophila - cytology</topic><topic>Drosophila - embryology</topic><topic>Drosophila - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Drosophila Proteins - physiology</topic><topic>Endocytosis</topic><topic>Endocytosis - physiology</topic><topic>Endosomes</topic><topic>Endosomes - metabolism</topic><topic>Female</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Insects</topic><topic>Internalization</topic><topic>Juvenile Hormones - physiology</topic><topic>Lipids</topic><topic>Localization</topic><topic>Mechanoreceptors - physiology</topic><topic>Microfilament Proteins - metabolism</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Organogenesis - drug effects</topic><topic>Organogenesis - genetics</topic><topic>Phenotypes</topic><topic>Phosphatidic acid</topic><topic>Phosphatidic Acids - pharmacology</topic><topic>Phospholipase D</topic><topic>Protein transport</topic><topic>Protein Transport - genetics</topic><topic>Receptors, Notch - metabolism</topic><topic>Science</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Sense organs</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medina-Yáñez, Ignacio</creatorcontrib><creatorcontrib>Olivares, Gonzalo H.</creatorcontrib><creatorcontrib>Vega-Macaya, Franco</creatorcontrib><creatorcontrib>Mlodzik, Marek</creatorcontrib><creatorcontrib>Olguín, Patricio</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medina-Yáñez, Ignacio</au><au>Olivares, Gonzalo H.</au><au>Vega-Macaya, Franco</au><au>Mlodzik, Marek</au><au>Olguín, Patricio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphatidic acid increases Notch signalling by affecting Sanpodo trafficking during Drosophila sensory organ development</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><stitle>SCI REP-UK</stitle><addtitle>Sci Rep</addtitle><date>2020-12-10</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>21731</spage><epage>21731</epage><pages>21731-21731</pages><artnum>21731</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Organ cell diversity depends on binary cell-fate decisions mediated by the Notch signalling pathway during development and tissue homeostasis. A clear example is the series of binary cell-fate decisions that take place during asymmetric cell divisions that give rise to the sensory organs of
Drosophila melanogaster
. The regulated trafficking of Sanpodo, a transmembrane protein that potentiates receptor activity, plays a pivotal role in this process. Membrane lipids can regulate many signalling pathways by affecting receptor and ligand trafficking. It remains unknown, however, whether phosphatidic acid regulates Notch-mediated binary cell-fate decisions during asymmetric cell divisions, and what are the cellular mechanisms involved. Here we show that increased phosphatidic acid derived from Phospholipase D leads to defects in binary cell-fate decisions that are compatible with ectopic Notch activation in precursor cells, where it is normally inactive. Null mutants of
numb
or the
α-subunit of Adaptor Protein complex-2
enhance dominantly this phenotype while removing a copy of
Notch
or
sanpodo
suppresses it. In vivo analyses show that Sanpodo localization decreases at acidic compartments, associated with increased internalization of Notch. We propose that Phospholipase D-derived phosphatidic acid promotes ectopic Notch signalling by increasing receptor endocytosis and inhibiting Sanpodo trafficking towards acidic endosomes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33303974</pmid><doi>10.1038/s41598-020-78831-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2784-0160</orcidid><orcidid>https://orcid.org/0000-0002-8847-4969</orcidid><orcidid>https://orcid.org/0000-0002-2033-7175</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-12, Vol.10 (1), p.21731-21731, Article 21731 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_webofscience_primary_000609195000087 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 631/136 631/136/142 631/208 631/208/135 631/208/2490 631/80 631/80/313 631/80/86 631/80/86/2365 631/80/86/820 Acids Adaptor Protein Complex 2 - physiology Animals Asymmetric Cell Division Cell activation Drosophila - cytology Drosophila - embryology Drosophila - genetics Drosophila Proteins - metabolism Drosophila Proteins - physiology Endocytosis Endocytosis - physiology Endosomes Endosomes - metabolism Female Homeostasis Humanities and Social Sciences Insects Internalization Juvenile Hormones - physiology Lipids Localization Mechanoreceptors - physiology Microfilament Proteins - metabolism multidisciplinary Multidisciplinary Sciences Organogenesis - drug effects Organogenesis - genetics Phenotypes Phosphatidic acid Phosphatidic Acids - pharmacology Phospholipase D Protein transport Protein Transport - genetics Receptors, Notch - metabolism Science Science & Technology Science & Technology - Other Topics Science (multidisciplinary) Sense organs Signal transduction Signal Transduction - drug effects |
title | Phosphatidic acid increases Notch signalling by affecting Sanpodo trafficking during Drosophila sensory organ development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T22%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphatidic%20acid%20increases%20Notch%20signalling%20by%20affecting%20Sanpodo%20trafficking%20during%20Drosophila%20sensory%20organ%20development&rft.jtitle=Scientific%20reports&rft.au=Medina-Y%C3%A1%C3%B1ez,%20Ignacio&rft.date=2020-12-10&rft.volume=10&rft.issue=1&rft.spage=21731&rft.epage=21731&rft.pages=21731-21731&rft.artnum=21731&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-78831-z&rft_dat=%3Cproquest_webof%3E2470278047%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473295144&rft_id=info:pmid/33303974&rft_doaj_id=oai_doaj_org_article_f18663aa686d425ca097bcd249292927&rfr_iscdi=true |