Evolution and ion kinetics of a XUV-induced nanoplasma in ammonia clusters

High-intensity extreme ultraviolet (XUV) pulses from a free-electron laser can be used to create a nanoplasma in clusters. In reference Michiels et al (2020 Phys. Chem. Chem. Phys. 22 7828-34) we investigated the formation of excited states in an XUV-induced nanoplasma in ammonia clusters. In the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. B, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2021-01, Vol.54 (2), p.24002, Article 024002
Hauptverfasser: Michiels, R, LaForge, A C, Bohlen, M, Callegari, C, Clark, A, von Conta, A, Coreno, M, Di Fraia, M, Drabbels, M, Finetti, P, Huppert, M, Oliver, V, Plekan, O, Prince, K C, Stranges, S, Wörner, H J, Stienkemeier, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-intensity extreme ultraviolet (XUV) pulses from a free-electron laser can be used to create a nanoplasma in clusters. In reference Michiels et al (2020 Phys. Chem. Chem. Phys. 22 7828-34) we investigated the formation of excited states in an XUV-induced nanoplasma in ammonia clusters. In the present article we expand our previous study with a detailed analysis of the nanoplasma evolution and ion kinetics. We use a time-delayed UV laser as probe to ionize excited states of H and H2+ in the XUV-induced plasma. Employing covariance mapping techniques, we show that the correlated emission of protons plays an important role in the plasma dynamics. The time-dependent kinetic energy of the ions created by the probe laser is measured, revealing the charge neutralization of the cluster happens on a sub-picosecond timescale. Furthermore, we observe ro-vibrationally excited molecular hydrogen ions H2+* being ejected from the clusters. We rationalize our data through a qualitative model of a finite-size non-thermal plasma.
ISSN:0953-4075
1361-6455
DOI:10.1088/1361-6455/abcf80